Step |
Hyp |
Ref |
Expression |
1 |
|
wwlksnredwwlkn.e |
|
2 |
1
|
wwlksnredwwlkn |
|
3 |
2
|
imp |
|
4 |
|
simpl |
|
5 |
4
|
adantl |
|
6 |
|
fveq1 |
|
7 |
6
|
eqcoms |
|
8 |
7
|
adantr |
|
9 |
|
eqid |
|
10 |
9 1
|
wwlknp |
|
11 |
|
nn0p1nn |
|
12 |
|
peano2nn0 |
|
13 |
|
nn0re |
|
14 |
|
lep1 |
|
15 |
12 13 14
|
3syl |
|
16 |
|
peano2nn0 |
|
17 |
16
|
nn0zd |
|
18 |
|
fznn |
|
19 |
12 17 18
|
3syl |
|
20 |
11 15 19
|
mpbir2and |
|
21 |
|
oveq2 |
|
22 |
21
|
eleq2d |
|
23 |
20 22
|
syl5ibr |
|
24 |
23
|
adantl |
|
25 |
|
simpl |
|
26 |
24 25
|
jctild |
|
27 |
26
|
3adant3 |
|
28 |
10 27
|
syl |
|
29 |
28
|
impcom |
|
30 |
29
|
adantl |
|
31 |
30
|
adantr |
|
32 |
31
|
adantl |
|
33 |
|
pfxfv0 |
|
34 |
32 33
|
syl |
|
35 |
|
simprll |
|
36 |
8 34 35
|
3eqtrd |
|
37 |
36
|
ex |
|
38 |
37
|
adantr |
|
39 |
38
|
impcom |
|
40 |
|
simpr |
|
41 |
40
|
adantl |
|
42 |
5 39 41
|
3jca |
|
43 |
42
|
ex |
|
44 |
43
|
reximdva |
|
45 |
44
|
ex |
|
46 |
45
|
com13 |
|
47 |
3 46
|
mpcom |
|
48 |
29 33
|
syl |
|
49 |
48
|
eqcomd |
|
50 |
49
|
adantl |
|
51 |
|
fveq1 |
|
52 |
51
|
adantr |
|
53 |
52
|
adantr |
|
54 |
|
simpr |
|
55 |
54
|
adantr |
|
56 |
50 53 55
|
3eqtrd |
|
57 |
56
|
ex |
|
58 |
57
|
3adant3 |
|
59 |
58
|
com12 |
|
60 |
59
|
rexlimdvw |
|
61 |
47 60
|
impbid |
|