| Step |
Hyp |
Ref |
Expression |
| 1 |
|
wwlksnredwwlkn.e |
|
| 2 |
1
|
wwlksnredwwlkn |
|
| 3 |
2
|
imp |
|
| 4 |
|
simpl |
|
| 5 |
4
|
adantl |
|
| 6 |
|
fveq1 |
|
| 7 |
6
|
eqcoms |
|
| 8 |
7
|
adantr |
|
| 9 |
|
eqid |
|
| 10 |
9 1
|
wwlknp |
|
| 11 |
|
nn0p1nn |
|
| 12 |
|
peano2nn0 |
|
| 13 |
|
nn0re |
|
| 14 |
|
lep1 |
|
| 15 |
12 13 14
|
3syl |
|
| 16 |
|
peano2nn0 |
|
| 17 |
16
|
nn0zd |
|
| 18 |
|
fznn |
|
| 19 |
12 17 18
|
3syl |
|
| 20 |
11 15 19
|
mpbir2and |
|
| 21 |
|
oveq2 |
|
| 22 |
21
|
eleq2d |
|
| 23 |
20 22
|
imbitrrid |
|
| 24 |
23
|
adantl |
|
| 25 |
|
simpl |
|
| 26 |
24 25
|
jctild |
|
| 27 |
26
|
3adant3 |
|
| 28 |
10 27
|
syl |
|
| 29 |
28
|
impcom |
|
| 30 |
29
|
adantl |
|
| 31 |
30
|
adantr |
|
| 32 |
31
|
adantl |
|
| 33 |
|
pfxfv0 |
|
| 34 |
32 33
|
syl |
|
| 35 |
|
simprll |
|
| 36 |
8 34 35
|
3eqtrd |
|
| 37 |
36
|
ex |
|
| 38 |
37
|
adantr |
|
| 39 |
38
|
impcom |
|
| 40 |
|
simpr |
|
| 41 |
40
|
adantl |
|
| 42 |
5 39 41
|
3jca |
|
| 43 |
42
|
ex |
|
| 44 |
43
|
reximdva |
|
| 45 |
44
|
ex |
|
| 46 |
45
|
com13 |
|
| 47 |
3 46
|
mpcom |
|
| 48 |
29 33
|
syl |
|
| 49 |
48
|
eqcomd |
|
| 50 |
49
|
adantl |
|
| 51 |
|
fveq1 |
|
| 52 |
51
|
adantr |
|
| 53 |
52
|
adantr |
|
| 54 |
|
simpr |
|
| 55 |
54
|
adantr |
|
| 56 |
50 53 55
|
3eqtrd |
|
| 57 |
56
|
ex |
|
| 58 |
57
|
3adant3 |
|
| 59 |
58
|
com12 |
|
| 60 |
59
|
rexlimdvw |
|
| 61 |
47 60
|
impbid |
|