Metamath Proof Explorer


Theorem wwlksnwwlksnon

Description: A walk of fixed length is a walk of fixed length between two vertices. (Contributed by Alexander van der Vekens, 21-Feb-2018) (Revised by AV, 12-May-2021) (Revised by AV, 13-Mar-2022)

Ref Expression
Hypothesis wwlksnwwlksnon.v V = Vtx G
Assertion wwlksnwwlksnon W N WWalksN G a V b V W a N WWalksNOn G b

Proof

Step Hyp Ref Expression
1 wwlksnwwlksnon.v V = Vtx G
2 wwlknbp1 W N WWalksN G N 0 W Word Vtx G W = N + 1
3 1 eqcomi Vtx G = V
4 3 wrdeqi Word Vtx G = Word V
5 4 eleq2i W Word Vtx G W Word V
6 5 biimpi W Word Vtx G W Word V
7 6 3ad2ant2 N 0 W Word Vtx G W = N + 1 W Word V
8 nn0p1nn N 0 N + 1
9 lbfzo0 0 0 ..^ N + 1 N + 1
10 8 9 sylibr N 0 0 0 ..^ N + 1
11 10 3ad2ant1 N 0 W Word Vtx G W = N + 1 0 0 ..^ N + 1
12 oveq2 W = N + 1 0 ..^ W = 0 ..^ N + 1
13 12 eleq2d W = N + 1 0 0 ..^ W 0 0 ..^ N + 1
14 13 3ad2ant3 N 0 W Word Vtx G W = N + 1 0 0 ..^ W 0 0 ..^ N + 1
15 11 14 mpbird N 0 W Word Vtx G W = N + 1 0 0 ..^ W
16 15 adantl W N WWalksN G N 0 W Word Vtx G W = N + 1 0 0 ..^ W
17 wrdsymbcl W Word V 0 0 ..^ W W 0 V
18 7 16 17 syl2an2 W N WWalksN G N 0 W Word Vtx G W = N + 1 W 0 V
19 fzonn0p1 N 0 N 0 ..^ N + 1
20 19 3ad2ant1 N 0 W Word Vtx G W = N + 1 N 0 ..^ N + 1
21 12 eleq2d W = N + 1 N 0 ..^ W N 0 ..^ N + 1
22 21 3ad2ant3 N 0 W Word Vtx G W = N + 1 N 0 ..^ W N 0 ..^ N + 1
23 20 22 mpbird N 0 W Word Vtx G W = N + 1 N 0 ..^ W
24 wrdsymbcl W Word V N 0 ..^ W W N V
25 7 23 24 syl2anc N 0 W Word Vtx G W = N + 1 W N V
26 25 adantl W N WWalksN G N 0 W Word Vtx G W = N + 1 W N V
27 simpl W N WWalksN G N 0 W Word Vtx G W = N + 1 W N WWalksN G
28 eqidd W N WWalksN G N 0 W Word Vtx G W = N + 1 W 0 = W 0
29 eqidd W N WWalksN G N 0 W Word Vtx G W = N + 1 W N = W N
30 eqeq2 a = W 0 W 0 = a W 0 = W 0
31 30 3anbi2d a = W 0 W N WWalksN G W 0 = a W N = b W N WWalksN G W 0 = W 0 W N = b
32 eqeq2 b = W N W N = b W N = W N
33 32 3anbi3d b = W N W N WWalksN G W 0 = W 0 W N = b W N WWalksN G W 0 = W 0 W N = W N
34 31 33 rspc2ev W 0 V W N V W N WWalksN G W 0 = W 0 W N = W N a V b V W N WWalksN G W 0 = a W N = b
35 18 26 27 28 29 34 syl113anc W N WWalksN G N 0 W Word Vtx G W = N + 1 a V b V W N WWalksN G W 0 = a W N = b
36 2 35 mpdan W N WWalksN G a V b V W N WWalksN G W 0 = a W N = b
37 simp1 W N WWalksN G W 0 = a W N = b W N WWalksN G
38 37 a1i a V b V W N WWalksN G W 0 = a W N = b W N WWalksN G
39 38 rexlimivv a V b V W N WWalksN G W 0 = a W N = b W N WWalksN G
40 36 39 impbii W N WWalksN G a V b V W N WWalksN G W 0 = a W N = b
41 wwlknon W a N WWalksNOn G b W N WWalksN G W 0 = a W N = b
42 41 bicomi W N WWalksN G W 0 = a W N = b W a N WWalksNOn G b
43 42 2rexbii a V b V W N WWalksN G W 0 = a W N = b a V b V W a N WWalksNOn G b
44 40 43 bitri W N WWalksN G a V b V W a N WWalksNOn G b