Metamath Proof Explorer


Theorem wwlksonvtx

Description: If a word W represents a walk of length 2 on two classes A and C , these classes are vertices. (Contributed by AV, 14-Mar-2022)

Ref Expression
Hypothesis wwlksonvtx.v V = Vtx G
Assertion wwlksonvtx W A N WWalksNOn G C A V C V

Proof

Step Hyp Ref Expression
1 wwlksonvtx.v V = Vtx G
2 fvex Vtx g V
3 2 2 pm3.2i Vtx g V Vtx g V
4 3 rgen2w n 0 g V Vtx g V Vtx g V
5 df-wwlksnon WWalksNOn = n 0 , g V a Vtx g , b Vtx g w n WWalksN g | w 0 = a w n = b
6 fveq2 g = G Vtx g = Vtx G
7 6 6 jca g = G Vtx g = Vtx G Vtx g = Vtx G
8 7 adantl n = N g = G Vtx g = Vtx G Vtx g = Vtx G
9 5 8 el2mpocl n 0 g V Vtx g V Vtx g V W A N WWalksNOn G C N 0 G V A Vtx G C Vtx G
10 4 9 ax-mp W A N WWalksNOn G C N 0 G V A Vtx G C Vtx G
11 1 eleq2i A V A Vtx G
12 1 eleq2i C V C Vtx G
13 11 12 anbi12i A V C V A Vtx G C Vtx G
14 13 biimpri A Vtx G C Vtx G A V C V
15 10 14 simpl2im W A N WWalksNOn G C A V C V