Step |
Hyp |
Ref |
Expression |
1 |
|
wwlktovf1o.d |
|
2 |
|
wwlktovf1o.r |
|
3 |
|
wwlktovf1o.f |
|
4 |
1 2 3
|
wwlktovf |
|
5 |
|
fveq1 |
|
6 |
|
fvex |
|
7 |
5 3 6
|
fvmpt |
|
8 |
|
fveq1 |
|
9 |
|
fvex |
|
10 |
8 3 9
|
fvmpt |
|
11 |
7 10
|
eqeqan12d |
|
12 |
|
fveqeq2 |
|
13 |
|
fveq1 |
|
14 |
13
|
eqeq1d |
|
15 |
|
fveq1 |
|
16 |
13 15
|
preq12d |
|
17 |
16
|
eleq1d |
|
18 |
12 14 17
|
3anbi123d |
|
19 |
18 1
|
elrab2 |
|
20 |
|
fveqeq2 |
|
21 |
|
fveq1 |
|
22 |
21
|
eqeq1d |
|
23 |
|
fveq1 |
|
24 |
21 23
|
preq12d |
|
25 |
24
|
eleq1d |
|
26 |
20 22 25
|
3anbi123d |
|
27 |
26 1
|
elrab2 |
|
28 |
|
simpr1 |
|
29 |
|
simpr1 |
|
30 |
29
|
eqcomd |
|
31 |
28 30
|
sylan9eq |
|
32 |
31
|
adantr |
|
33 |
|
simpr2 |
|
34 |
|
simpr2 |
|
35 |
34
|
eqcomd |
|
36 |
33 35
|
sylan9eq |
|
37 |
36
|
adantr |
|
38 |
|
simpr |
|
39 |
|
oveq2 |
|
40 |
|
fzo0to2pr |
|
41 |
39 40
|
eqtrdi |
|
42 |
41
|
raleqdv |
|
43 |
|
c0ex |
|
44 |
|
1ex |
|
45 |
|
fveq2 |
|
46 |
|
fveq2 |
|
47 |
45 46
|
eqeq12d |
|
48 |
|
fveq2 |
|
49 |
|
fveq2 |
|
50 |
48 49
|
eqeq12d |
|
51 |
43 44 47 50
|
ralpr |
|
52 |
42 51
|
bitrdi |
|
53 |
52
|
3ad2ant1 |
|
54 |
53
|
ad3antlr |
|
55 |
37 38 54
|
mpbir2and |
|
56 |
|
eqwrd |
|
57 |
56
|
ad2ant2r |
|
58 |
57
|
adantr |
|
59 |
32 55 58
|
mpbir2and |
|
60 |
59
|
ex |
|
61 |
19 27 60
|
syl2anb |
|
62 |
11 61
|
sylbid |
|
63 |
62
|
rgen2 |
|
64 |
|
dff13 |
|
65 |
4 63 64
|
mpbir2an |
|