Database
REAL AND COMPLEX NUMBERS
Words over a set
Longer string literals
wwlktovf1o
Next ⟩
wrd2f1tovbij
Metamath Proof Explorer
Ascii
Unicode
Theorem
wwlktovf1o
Description:
Lemma 4 for
wrd2f1tovbij
.
(Contributed by
Alexander van der Vekens
, 28-Jul-2018)
Ref
Expression
Hypotheses
wwlktovf1o.d
⊢
D
=
w
∈
Word
V
|
w
=
2
∧
w
⁡
0
=
P
∧
w
⁡
0
w
⁡
1
∈
X
wwlktovf1o.r
⊢
R
=
n
∈
V
|
P
n
∈
X
wwlktovf1o.f
⊢
F
=
t
∈
D
⟼
t
⁡
1
Assertion
wwlktovf1o
⊢
P
∈
V
→
F
:
D
⟶
1-1 onto
R
Proof
Step
Hyp
Ref
Expression
1
wwlktovf1o.d
⊢
D
=
w
∈
Word
V
|
w
=
2
∧
w
⁡
0
=
P
∧
w
⁡
0
w
⁡
1
∈
X
2
wwlktovf1o.r
⊢
R
=
n
∈
V
|
P
n
∈
X
3
wwlktovf1o.f
⊢
F
=
t
∈
D
⟼
t
⁡
1
4
1
2
3
wwlktovf1
⊢
F
:
D
⟶
1-1
R
5
4
a1i
⊢
P
∈
V
→
F
:
D
⟶
1-1
R
6
1
2
3
wwlktovfo
⊢
P
∈
V
→
F
:
D
⟶
onto
R
7
df-f1o
⊢
F
:
D
⟶
1-1 onto
R
↔
F
:
D
⟶
1-1
R
∧
F
:
D
⟶
onto
R
8
5
6
7
sylanbrc
⊢
P
∈
V
→
F
:
D
⟶
1-1 onto
R