Metamath Proof Explorer


Theorem wwlktovf1o

Description: Lemma 4 for wrd2f1tovbij . (Contributed by Alexander van der Vekens, 28-Jul-2018)

Ref Expression
Hypotheses wwlktovf1o.d D = w Word V | w = 2 w 0 = P w 0 w 1 X
wwlktovf1o.r R = n V | P n X
wwlktovf1o.f F = t D t 1
Assertion wwlktovf1o P V F : D 1-1 onto R

Proof

Step Hyp Ref Expression
1 wwlktovf1o.d D = w Word V | w = 2 w 0 = P w 0 w 1 X
2 wwlktovf1o.r R = n V | P n X
3 wwlktovf1o.f F = t D t 1
4 1 2 3 wwlktovf1 F : D 1-1 R
5 4 a1i P V F : D 1-1 R
6 1 2 3 wwlktovfo P V F : D onto R
7 df-f1o F : D 1-1 onto R F : D 1-1 R F : D onto R
8 5 6 7 sylanbrc P V F : D 1-1 onto R