Step |
Hyp |
Ref |
Expression |
1 |
|
wwlktovf1o.d |
|
2 |
|
wwlktovf1o.r |
|
3 |
|
wwlktovf1o.f |
|
4 |
1 2 3
|
wwlktovf |
|
5 |
4
|
a1i |
|
6 |
|
preq2 |
|
7 |
6
|
eleq1d |
|
8 |
7 2
|
elrab2 |
|
9 |
|
simpl |
|
10 |
9
|
anim2i |
|
11 |
|
eqidd |
|
12 |
|
wrdlen2i |
|
13 |
10 11 12
|
sylc |
|
14 |
|
prex |
|
15 |
14
|
a1i |
|
16 |
|
eleq1 |
|
17 |
16
|
biimpd |
|
18 |
17
|
adantr |
|
19 |
18
|
com12 |
|
20 |
19
|
adantr |
|
21 |
20
|
adantr |
|
22 |
21
|
impcom |
|
23 |
|
fveqeq2 |
|
24 |
23
|
biimpd |
|
25 |
24
|
adantr |
|
26 |
25
|
com12 |
|
27 |
26
|
adantl |
|
28 |
27
|
adantr |
|
29 |
28
|
impcom |
|
30 |
|
fveq1 |
|
31 |
30
|
eqeq1d |
|
32 |
31
|
biimpd |
|
33 |
32
|
adantr |
|
34 |
33
|
com12 |
|
35 |
34
|
adantr |
|
36 |
35
|
adantl |
|
37 |
36
|
impcom |
|
38 |
|
fveq1 |
|
39 |
38
|
eqeq1d |
|
40 |
31 39
|
anbi12d |
|
41 |
|
preq12 |
|
42 |
41
|
eqcomd |
|
43 |
42
|
eleq1d |
|
44 |
43
|
biimpd |
|
45 |
40 44
|
syl6bi |
|
46 |
45
|
com12 |
|
47 |
46
|
adantl |
|
48 |
47
|
com13 |
|
49 |
48
|
ad2antll |
|
50 |
49
|
impcom |
|
51 |
50
|
imp |
|
52 |
29 37 51
|
3jca |
|
53 |
|
eqcom |
|
54 |
38
|
eqeq2d |
|
55 |
54
|
biimpd |
|
56 |
53 55
|
syl5bi |
|
57 |
56
|
com12 |
|
58 |
57
|
ad2antll |
|
59 |
58
|
com12 |
|
60 |
59
|
adantr |
|
61 |
60
|
imp |
|
62 |
22 52 61
|
jca31 |
|
63 |
62
|
exp31 |
|
64 |
63
|
eqcoms |
|
65 |
64
|
impcom |
|
66 |
15 65
|
spcimedv |
|
67 |
13 66
|
mpd |
|
68 |
|
fveqeq2 |
|
69 |
|
fveq1 |
|
70 |
69
|
eqeq1d |
|
71 |
|
fveq1 |
|
72 |
69 71
|
preq12d |
|
73 |
72
|
eleq1d |
|
74 |
68 70 73
|
3anbi123d |
|
75 |
74
|
elrab |
|
76 |
75
|
anbi1i |
|
77 |
76
|
exbii |
|
78 |
67 77
|
sylibr |
|
79 |
|
df-rex |
|
80 |
78 79
|
sylibr |
|
81 |
1
|
rexeqi |
|
82 |
80 81
|
sylibr |
|
83 |
|
fveq1 |
|
84 |
|
fvex |
|
85 |
83 3 84
|
fvmpt |
|
86 |
85
|
eqeq2d |
|
87 |
86
|
rexbiia |
|
88 |
82 87
|
sylibr |
|
89 |
8 88
|
sylan2b |
|
90 |
89
|
ralrimiva |
|
91 |
|
dffo3 |
|
92 |
5 90 91
|
sylanbrc |
|