Metamath Proof Explorer


Theorem x2times

Description: Extended real version of 2times . (Contributed by Mario Carneiro, 20-Aug-2015)

Ref Expression
Assertion x2times A * 2 𝑒 A = A + 𝑒 A

Proof

Step Hyp Ref Expression
1 df-2 2 = 1 + 1
2 1re 1
3 rexadd 1 1 1 + 𝑒 1 = 1 + 1
4 2 2 3 mp2an 1 + 𝑒 1 = 1 + 1
5 1 4 eqtr4i 2 = 1 + 𝑒 1
6 5 oveq1i 2 𝑒 A = 1 + 𝑒 1 𝑒 A
7 1xr 1 *
8 0le1 0 1
9 7 8 pm3.2i 1 * 0 1
10 xadddi2r 1 * 0 1 1 * 0 1 A * 1 + 𝑒 1 𝑒 A = 1 𝑒 A + 𝑒 1 𝑒 A
11 9 9 10 mp3an12 A * 1 + 𝑒 1 𝑒 A = 1 𝑒 A + 𝑒 1 𝑒 A
12 xmulid2 A * 1 𝑒 A = A
13 12 12 oveq12d A * 1 𝑒 A + 𝑒 1 𝑒 A = A + 𝑒 A
14 11 13 eqtrd A * 1 + 𝑒 1 𝑒 A = A + 𝑒 A
15 6 14 eqtrid A * 2 𝑒 A = A + 𝑒 A