Metamath Proof Explorer


Theorem xadd0ge

Description: A number is less than or equal to itself plus a nonnegative extended real. (Contributed by Glauco Siliprandi, 17-Aug-2020)

Ref Expression
Hypotheses xadd0ge.a φ A *
xadd0ge.b φ B 0 +∞
Assertion xadd0ge φ A A + 𝑒 B

Proof

Step Hyp Ref Expression
1 xadd0ge.a φ A *
2 xadd0ge.b φ B 0 +∞
3 xaddid1 A * A + 𝑒 0 = A
4 1 3 syl φ A + 𝑒 0 = A
5 4 eqcomd φ A = A + 𝑒 0
6 0xr 0 *
7 6 a1i φ 0 *
8 1 7 jca φ A * 0 *
9 iccssxr 0 +∞ *
10 9 2 sselid φ B *
11 1 10 jca φ A * B *
12 8 11 jca φ A * 0 * A * B *
13 1 xrleidd φ A A
14 pnfxr +∞ *
15 14 a1i φ +∞ *
16 iccgelb 0 * +∞ * B 0 +∞ 0 B
17 7 15 2 16 syl3anc φ 0 B
18 13 17 jca φ A A 0 B
19 xle2add A * 0 * A * B * A A 0 B A + 𝑒 0 A + 𝑒 B
20 12 18 19 sylc φ A + 𝑒 0 A + 𝑒 B
21 5 20 eqbrtrd φ A A + 𝑒 B