Metamath Proof Explorer
		
		
		
		Description:  A number is less than or equal to itself plus a nonnegative extended
       real.  (Contributed by Glauco Siliprandi, 17-Aug-2020)
		
			
				
					 | 
					 | 
					Ref | 
					Expression | 
				
					
						 | 
						Hypotheses | 
						xadd0ge2.a | 
						   | 
					
					
						 | 
						 | 
						xadd0ge2.b | 
						   | 
					
				
					 | 
					Assertion | 
					xadd0ge2 | 
					   | 
				
			
		
		
			
				Proof
				
					
						| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							xadd0ge2.a | 
							   | 
						
						
							| 2 | 
							
								
							 | 
							xadd0ge2.b | 
							   | 
						
						
							| 3 | 
							
								1 2
							 | 
							xadd0ge | 
							   | 
						
						
							| 4 | 
							
								
							 | 
							iccssxr | 
							   | 
						
						
							| 5 | 
							
								4 2
							 | 
							sselid | 
							   | 
						
						
							| 6 | 
							
								1 5
							 | 
							xaddcomd | 
							   | 
						
						
							| 7 | 
							
								3 6
							 | 
							breqtrd | 
							   |