Metamath Proof Explorer


Theorem xadd0ge2

Description: A number is less than or equal to itself plus a nonnegative extended real. (Contributed by Glauco Siliprandi, 17-Aug-2020)

Ref Expression
Hypotheses xadd0ge2.a φ A *
xadd0ge2.b φ B 0 +∞
Assertion xadd0ge2 φ A B + 𝑒 A

Proof

Step Hyp Ref Expression
1 xadd0ge2.a φ A *
2 xadd0ge2.b φ B 0 +∞
3 1 2 xadd0ge φ A A + 𝑒 B
4 iccssxr 0 +∞ *
5 4 2 sselid φ B *
6 1 5 xaddcomd φ A + 𝑒 B = B + 𝑒 A
7 3 6 breqtrd φ A B + 𝑒 A