Step |
Hyp |
Ref |
Expression |
1 |
|
recn |
|
2 |
|
recn |
|
3 |
|
recn |
|
4 |
|
addass |
|
5 |
1 2 3 4
|
syl3an |
|
6 |
5
|
3expa |
|
7 |
|
readdcl |
|
8 |
|
rexadd |
|
9 |
7 8
|
sylan |
|
10 |
|
readdcl |
|
11 |
|
rexadd |
|
12 |
10 11
|
sylan2 |
|
13 |
12
|
anassrs |
|
14 |
6 9 13
|
3eqtr4d |
|
15 |
|
rexadd |
|
16 |
15
|
adantr |
|
17 |
16
|
oveq1d |
|
18 |
|
rexadd |
|
19 |
18
|
adantll |
|
20 |
19
|
oveq2d |
|
21 |
14 17 20
|
3eqtr4d |
|
22 |
21
|
adantll |
|
23 |
|
oveq2 |
|
24 |
|
simp1l |
|
25 |
|
simp2l |
|
26 |
|
xaddcl |
|
27 |
24 25 26
|
syl2anc |
|
28 |
|
xaddnemnf |
|
29 |
28
|
3adant3 |
|
30 |
|
xaddpnf1 |
|
31 |
27 29 30
|
syl2anc |
|
32 |
23 31
|
sylan9eqr |
|
33 |
|
xaddpnf1 |
|
34 |
33
|
3ad2ant1 |
|
35 |
34
|
adantr |
|
36 |
32 35
|
eqtr4d |
|
37 |
|
oveq2 |
|
38 |
|
xaddpnf1 |
|
39 |
38
|
3ad2ant2 |
|
40 |
37 39
|
sylan9eqr |
|
41 |
40
|
oveq2d |
|
42 |
36 41
|
eqtr4d |
|
43 |
42
|
adantlr |
|
44 |
|
simp3 |
|
45 |
|
xrnemnf |
|
46 |
44 45
|
sylib |
|
47 |
46
|
adantr |
|
48 |
22 43 47
|
mpjaodan |
|
49 |
48
|
anassrs |
|
50 |
|
xaddpnf2 |
|
51 |
50
|
3ad2ant3 |
|
52 |
51 34
|
eqtr4d |
|
53 |
52
|
adantr |
|
54 |
|
oveq2 |
|
55 |
54 34
|
sylan9eqr |
|
56 |
55
|
oveq1d |
|
57 |
|
oveq1 |
|
58 |
57 51
|
sylan9eqr |
|
59 |
58
|
oveq2d |
|
60 |
53 56 59
|
3eqtr4d |
|
61 |
60
|
adantlr |
|
62 |
|
simpl2 |
|
63 |
|
xrnemnf |
|
64 |
62 63
|
sylib |
|
65 |
49 61 64
|
mpjaodan |
|
66 |
|
simpl3 |
|
67 |
66 50
|
syl |
|
68 |
|
simpl2l |
|
69 |
|
simpl3l |
|
70 |
|
xaddcl |
|
71 |
68 69 70
|
syl2anc |
|
72 |
|
simpl2 |
|
73 |
|
xaddnemnf |
|
74 |
72 66 73
|
syl2anc |
|
75 |
|
xaddpnf2 |
|
76 |
71 74 75
|
syl2anc |
|
77 |
67 76
|
eqtr4d |
|
78 |
|
simpr |
|
79 |
78
|
oveq1d |
|
80 |
|
xaddpnf2 |
|
81 |
72 80
|
syl |
|
82 |
79 81
|
eqtrd |
|
83 |
82
|
oveq1d |
|
84 |
78
|
oveq1d |
|
85 |
77 83 84
|
3eqtr4d |
|
86 |
|
simp1 |
|
87 |
|
xrnemnf |
|
88 |
86 87
|
sylib |
|
89 |
65 85 88
|
mpjaodan |
|