Metamath Proof Explorer


Theorem xaddass2

Description: Associativity of extended real addition. See xaddass for notes on the hypotheses. (Contributed by Mario Carneiro, 20-Aug-2015)

Ref Expression
Assertion xaddass2 A * A +∞ B * B +∞ C * C +∞ A + 𝑒 B + 𝑒 C = A + 𝑒 B + 𝑒 C

Proof

Step Hyp Ref Expression
1 simp1l A * A +∞ B * B +∞ C * C +∞ A *
2 xnegcl A * A *
3 1 2 syl A * A +∞ B * B +∞ C * C +∞ A *
4 simp1r A * A +∞ B * B +∞ C * C +∞ A +∞
5 pnfxr +∞ *
6 xneg11 A * +∞ * A = +∞ A = +∞
7 1 5 6 sylancl A * A +∞ B * B +∞ C * C +∞ A = +∞ A = +∞
8 7 necon3bid A * A +∞ B * B +∞ C * C +∞ A +∞ A +∞
9 4 8 mpbird A * A +∞ B * B +∞ C * C +∞ A +∞
10 xnegpnf +∞ = −∞
11 10 a1i A * A +∞ B * B +∞ C * C +∞ +∞ = −∞
12 9 11 neeqtrd A * A +∞ B * B +∞ C * C +∞ A −∞
13 simp2l A * A +∞ B * B +∞ C * C +∞ B *
14 xnegcl B * B *
15 13 14 syl A * A +∞ B * B +∞ C * C +∞ B *
16 simp2r A * A +∞ B * B +∞ C * C +∞ B +∞
17 xneg11 B * +∞ * B = +∞ B = +∞
18 13 5 17 sylancl A * A +∞ B * B +∞ C * C +∞ B = +∞ B = +∞
19 18 necon3bid A * A +∞ B * B +∞ C * C +∞ B +∞ B +∞
20 16 19 mpbird A * A +∞ B * B +∞ C * C +∞ B +∞
21 20 11 neeqtrd A * A +∞ B * B +∞ C * C +∞ B −∞
22 simp3l A * A +∞ B * B +∞ C * C +∞ C *
23 xnegcl C * C *
24 22 23 syl A * A +∞ B * B +∞ C * C +∞ C *
25 simp3r A * A +∞ B * B +∞ C * C +∞ C +∞
26 xneg11 C * +∞ * C = +∞ C = +∞
27 22 5 26 sylancl A * A +∞ B * B +∞ C * C +∞ C = +∞ C = +∞
28 27 necon3bid A * A +∞ B * B +∞ C * C +∞ C +∞ C +∞
29 25 28 mpbird A * A +∞ B * B +∞ C * C +∞ C +∞
30 29 11 neeqtrd A * A +∞ B * B +∞ C * C +∞ C −∞
31 xaddass A * A −∞ B * B −∞ C * C −∞ A + 𝑒 B + 𝑒 C = A + 𝑒 B + 𝑒 C
32 3 12 15 21 24 30 31 syl222anc A * A +∞ B * B +∞ C * C +∞ A + 𝑒 B + 𝑒 C = A + 𝑒 B + 𝑒 C
33 xnegdi A * B * A + 𝑒 B = A + 𝑒 B
34 1 13 33 syl2anc A * A +∞ B * B +∞ C * C +∞ A + 𝑒 B = A + 𝑒 B
35 34 oveq1d A * A +∞ B * B +∞ C * C +∞ A + 𝑒 B + 𝑒 C = A + 𝑒 B + 𝑒 C
36 xnegdi B * C * B + 𝑒 C = B + 𝑒 C
37 13 22 36 syl2anc A * A +∞ B * B +∞ C * C +∞ B + 𝑒 C = B + 𝑒 C
38 37 oveq2d A * A +∞ B * B +∞ C * C +∞ A + 𝑒 B + 𝑒 C = A + 𝑒 B + 𝑒 C
39 32 35 38 3eqtr4d A * A +∞ B * B +∞ C * C +∞ A + 𝑒 B + 𝑒 C = A + 𝑒 B + 𝑒 C
40 xaddcl A * B * A + 𝑒 B *
41 1 13 40 syl2anc A * A +∞ B * B +∞ C * C +∞ A + 𝑒 B *
42 xnegdi A + 𝑒 B * C * A + 𝑒 B + 𝑒 C = A + 𝑒 B + 𝑒 C
43 41 22 42 syl2anc A * A +∞ B * B +∞ C * C +∞ A + 𝑒 B + 𝑒 C = A + 𝑒 B + 𝑒 C
44 xaddcl B * C * B + 𝑒 C *
45 13 22 44 syl2anc A * A +∞ B * B +∞ C * C +∞ B + 𝑒 C *
46 xnegdi A * B + 𝑒 C * A + 𝑒 B + 𝑒 C = A + 𝑒 B + 𝑒 C
47 1 45 46 syl2anc A * A +∞ B * B +∞ C * C +∞ A + 𝑒 B + 𝑒 C = A + 𝑒 B + 𝑒 C
48 39 43 47 3eqtr4d A * A +∞ B * B +∞ C * C +∞ A + 𝑒 B + 𝑒 C = A + 𝑒 B + 𝑒 C
49 xaddcl A + 𝑒 B * C * A + 𝑒 B + 𝑒 C *
50 41 22 49 syl2anc A * A +∞ B * B +∞ C * C +∞ A + 𝑒 B + 𝑒 C *
51 xaddcl A * B + 𝑒 C * A + 𝑒 B + 𝑒 C *
52 1 45 51 syl2anc A * A +∞ B * B +∞ C * C +∞ A + 𝑒 B + 𝑒 C *
53 xneg11 A + 𝑒 B + 𝑒 C * A + 𝑒 B + 𝑒 C * A + 𝑒 B + 𝑒 C = A + 𝑒 B + 𝑒 C A + 𝑒 B + 𝑒 C = A + 𝑒 B + 𝑒 C
54 50 52 53 syl2anc A * A +∞ B * B +∞ C * C +∞ A + 𝑒 B + 𝑒 C = A + 𝑒 B + 𝑒 C A + 𝑒 B + 𝑒 C = A + 𝑒 B + 𝑒 C
55 48 54 mpbid A * A +∞ B * B +∞ C * C +∞ A + 𝑒 B + 𝑒 C = A + 𝑒 B + 𝑒 C