| Step |
Hyp |
Ref |
Expression |
| 1 |
|
elxr |
|
| 2 |
|
elxr |
|
| 3 |
|
recn |
|
| 4 |
|
recn |
|
| 5 |
|
addcom |
|
| 6 |
3 4 5
|
syl2an |
|
| 7 |
|
rexadd |
|
| 8 |
|
rexadd |
|
| 9 |
8
|
ancoms |
|
| 10 |
6 7 9
|
3eqtr4d |
|
| 11 |
|
oveq2 |
|
| 12 |
|
rexr |
|
| 13 |
|
renemnf |
|
| 14 |
|
xaddpnf1 |
|
| 15 |
12 13 14
|
syl2anc |
|
| 16 |
11 15
|
sylan9eqr |
|
| 17 |
|
oveq1 |
|
| 18 |
|
xaddpnf2 |
|
| 19 |
12 13 18
|
syl2anc |
|
| 20 |
17 19
|
sylan9eqr |
|
| 21 |
16 20
|
eqtr4d |
|
| 22 |
|
oveq2 |
|
| 23 |
|
renepnf |
|
| 24 |
|
xaddmnf1 |
|
| 25 |
12 23 24
|
syl2anc |
|
| 26 |
22 25
|
sylan9eqr |
|
| 27 |
|
oveq1 |
|
| 28 |
|
xaddmnf2 |
|
| 29 |
12 23 28
|
syl2anc |
|
| 30 |
27 29
|
sylan9eqr |
|
| 31 |
26 30
|
eqtr4d |
|
| 32 |
10 21 31
|
3jaodan |
|
| 33 |
2 32
|
sylan2b |
|
| 34 |
|
pnfaddmnf |
|
| 35 |
|
mnfaddpnf |
|
| 36 |
34 35
|
eqtr4i |
|
| 37 |
|
simpr |
|
| 38 |
37
|
oveq2d |
|
| 39 |
37
|
oveq1d |
|
| 40 |
36 38 39
|
3eqtr4a |
|
| 41 |
|
xaddpnf2 |
|
| 42 |
|
xaddpnf1 |
|
| 43 |
41 42
|
eqtr4d |
|
| 44 |
40 43
|
pm2.61dane |
|
| 45 |
44
|
adantl |
|
| 46 |
|
simpl |
|
| 47 |
46
|
oveq1d |
|
| 48 |
46
|
oveq2d |
|
| 49 |
45 47 48
|
3eqtr4d |
|
| 50 |
35 34
|
eqtr4i |
|
| 51 |
|
simpr |
|
| 52 |
51
|
oveq2d |
|
| 53 |
51
|
oveq1d |
|
| 54 |
50 52 53
|
3eqtr4a |
|
| 55 |
|
xaddmnf2 |
|
| 56 |
|
xaddmnf1 |
|
| 57 |
55 56
|
eqtr4d |
|
| 58 |
54 57
|
pm2.61dane |
|
| 59 |
58
|
adantl |
|
| 60 |
|
simpl |
|
| 61 |
60
|
oveq1d |
|
| 62 |
60
|
oveq2d |
|
| 63 |
59 61 62
|
3eqtr4d |
|
| 64 |
33 49 63
|
3jaoian |
|
| 65 |
1 64
|
sylanb |
|