Step |
Hyp |
Ref |
Expression |
1 |
|
elxr |
|
2 |
|
elxr |
|
3 |
|
recn |
|
4 |
|
recn |
|
5 |
|
addcom |
|
6 |
3 4 5
|
syl2an |
|
7 |
|
rexadd |
|
8 |
|
rexadd |
|
9 |
8
|
ancoms |
|
10 |
6 7 9
|
3eqtr4d |
|
11 |
|
oveq2 |
|
12 |
|
rexr |
|
13 |
|
renemnf |
|
14 |
|
xaddpnf1 |
|
15 |
12 13 14
|
syl2anc |
|
16 |
11 15
|
sylan9eqr |
|
17 |
|
oveq1 |
|
18 |
|
xaddpnf2 |
|
19 |
12 13 18
|
syl2anc |
|
20 |
17 19
|
sylan9eqr |
|
21 |
16 20
|
eqtr4d |
|
22 |
|
oveq2 |
|
23 |
|
renepnf |
|
24 |
|
xaddmnf1 |
|
25 |
12 23 24
|
syl2anc |
|
26 |
22 25
|
sylan9eqr |
|
27 |
|
oveq1 |
|
28 |
|
xaddmnf2 |
|
29 |
12 23 28
|
syl2anc |
|
30 |
27 29
|
sylan9eqr |
|
31 |
26 30
|
eqtr4d |
|
32 |
10 21 31
|
3jaodan |
|
33 |
2 32
|
sylan2b |
|
34 |
|
pnfaddmnf |
|
35 |
|
mnfaddpnf |
|
36 |
34 35
|
eqtr4i |
|
37 |
|
simpr |
|
38 |
37
|
oveq2d |
|
39 |
37
|
oveq1d |
|
40 |
36 38 39
|
3eqtr4a |
|
41 |
|
xaddpnf2 |
|
42 |
|
xaddpnf1 |
|
43 |
41 42
|
eqtr4d |
|
44 |
40 43
|
pm2.61dane |
|
45 |
44
|
adantl |
|
46 |
|
simpl |
|
47 |
46
|
oveq1d |
|
48 |
46
|
oveq2d |
|
49 |
45 47 48
|
3eqtr4d |
|
50 |
35 34
|
eqtr4i |
|
51 |
|
simpr |
|
52 |
51
|
oveq2d |
|
53 |
51
|
oveq1d |
|
54 |
50 52 53
|
3eqtr4a |
|
55 |
|
xaddmnf2 |
|
56 |
|
xaddmnf1 |
|
57 |
55 56
|
eqtr4d |
|
58 |
54 57
|
pm2.61dane |
|
59 |
58
|
adantl |
|
60 |
|
simpl |
|
61 |
60
|
oveq1d |
|
62 |
60
|
oveq2d |
|
63 |
59 61 62
|
3eqtr4d |
|
64 |
33 49 63
|
3jaoian |
|
65 |
1 64
|
sylanb |
|