Metamath Proof Explorer
Description: The extended real addition operation is commutative. (Contributed by Glauco Siliprandi, 17-Aug-2020)
|
|
Ref |
Expression |
|
Hypotheses |
xaddcomd.1 |
|
|
|
xaddcomd.2 |
|
|
Assertion |
xaddcomd |
|
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
xaddcomd.1 |
|
2 |
|
xaddcomd.2 |
|
3 |
|
xaddcom |
|
4 |
1 2 3
|
syl2anc |
|