Metamath Proof Explorer


Theorem xaddcomd

Description: The extended real addition operation is commutative. (Contributed by Glauco Siliprandi, 17-Aug-2020)

Ref Expression
Hypotheses xaddcomd.1 φ A *
xaddcomd.2 φ B *
Assertion xaddcomd φ A + 𝑒 B = B + 𝑒 A

Proof

Step Hyp Ref Expression
1 xaddcomd.1 φ A *
2 xaddcomd.2 φ B *
3 xaddcom A * B * A + 𝑒 B = B + 𝑒 A
4 1 2 3 syl2anc φ A + 𝑒 B = B + 𝑒 A