| Step |
Hyp |
Ref |
Expression |
| 1 |
|
xadddilem |
|
| 2 |
|
simpl2 |
|
| 3 |
|
simpl3 |
|
| 4 |
|
xaddcl |
|
| 5 |
2 3 4
|
syl2anc |
|
| 6 |
|
xmul02 |
|
| 7 |
5 6
|
syl |
|
| 8 |
|
0xr |
|
| 9 |
|
xaddrid |
|
| 10 |
8 9
|
ax-mp |
|
| 11 |
7 10
|
eqtr4di |
|
| 12 |
|
simpr |
|
| 13 |
12
|
oveq1d |
|
| 14 |
|
xmul02 |
|
| 15 |
2 14
|
syl |
|
| 16 |
12
|
oveq1d |
|
| 17 |
15 16
|
eqtr3d |
|
| 18 |
|
xmul02 |
|
| 19 |
3 18
|
syl |
|
| 20 |
12
|
oveq1d |
|
| 21 |
19 20
|
eqtr3d |
|
| 22 |
17 21
|
oveq12d |
|
| 23 |
11 13 22
|
3eqtr3d |
|
| 24 |
|
simp1 |
|
| 25 |
24
|
adantr |
|
| 26 |
|
rexneg |
|
| 27 |
|
renegcl |
|
| 28 |
26 27
|
eqeltrd |
|
| 29 |
25 28
|
syl |
|
| 30 |
|
simpl2 |
|
| 31 |
|
simpl3 |
|
| 32 |
24
|
rexrd |
|
| 33 |
|
xlt0neg1 |
|
| 34 |
32 33
|
syl |
|
| 35 |
34
|
biimpa |
|
| 36 |
|
xadddilem |
|
| 37 |
29 30 31 35 36
|
syl31anc |
|
| 38 |
32
|
adantr |
|
| 39 |
30 31 4
|
syl2anc |
|
| 40 |
|
xmulneg1 |
|
| 41 |
38 39 40
|
syl2anc |
|
| 42 |
|
xmulneg1 |
|
| 43 |
38 30 42
|
syl2anc |
|
| 44 |
|
xmulneg1 |
|
| 45 |
38 31 44
|
syl2anc |
|
| 46 |
43 45
|
oveq12d |
|
| 47 |
|
xmulcl |
|
| 48 |
38 30 47
|
syl2anc |
|
| 49 |
|
xmulcl |
|
| 50 |
38 31 49
|
syl2anc |
|
| 51 |
|
xnegdi |
|
| 52 |
48 50 51
|
syl2anc |
|
| 53 |
46 52
|
eqtr4d |
|
| 54 |
37 41 53
|
3eqtr3d |
|
| 55 |
|
xmulcl |
|
| 56 |
38 39 55
|
syl2anc |
|
| 57 |
|
xaddcl |
|
| 58 |
48 50 57
|
syl2anc |
|
| 59 |
|
xneg11 |
|
| 60 |
56 58 59
|
syl2anc |
|
| 61 |
54 60
|
mpbid |
|
| 62 |
|
0re |
|
| 63 |
|
lttri4 |
|
| 64 |
62 24 63
|
sylancr |
|
| 65 |
1 23 61 64
|
mpjao3dan |
|