Step |
Hyp |
Ref |
Expression |
1 |
|
xadddilem |
|
2 |
|
simpl2 |
|
3 |
|
simpl3 |
|
4 |
|
xaddcl |
|
5 |
2 3 4
|
syl2anc |
|
6 |
|
xmul02 |
|
7 |
5 6
|
syl |
|
8 |
|
0xr |
|
9 |
|
xaddid1 |
|
10 |
8 9
|
ax-mp |
|
11 |
7 10
|
eqtr4di |
|
12 |
|
simpr |
|
13 |
12
|
oveq1d |
|
14 |
|
xmul02 |
|
15 |
2 14
|
syl |
|
16 |
12
|
oveq1d |
|
17 |
15 16
|
eqtr3d |
|
18 |
|
xmul02 |
|
19 |
3 18
|
syl |
|
20 |
12
|
oveq1d |
|
21 |
19 20
|
eqtr3d |
|
22 |
17 21
|
oveq12d |
|
23 |
11 13 22
|
3eqtr3d |
|
24 |
|
simp1 |
|
25 |
24
|
adantr |
|
26 |
|
rexneg |
|
27 |
|
renegcl |
|
28 |
26 27
|
eqeltrd |
|
29 |
25 28
|
syl |
|
30 |
|
simpl2 |
|
31 |
|
simpl3 |
|
32 |
24
|
rexrd |
|
33 |
|
xlt0neg1 |
|
34 |
32 33
|
syl |
|
35 |
34
|
biimpa |
|
36 |
|
xadddilem |
|
37 |
29 30 31 35 36
|
syl31anc |
|
38 |
32
|
adantr |
|
39 |
30 31 4
|
syl2anc |
|
40 |
|
xmulneg1 |
|
41 |
38 39 40
|
syl2anc |
|
42 |
|
xmulneg1 |
|
43 |
38 30 42
|
syl2anc |
|
44 |
|
xmulneg1 |
|
45 |
38 31 44
|
syl2anc |
|
46 |
43 45
|
oveq12d |
|
47 |
|
xmulcl |
|
48 |
38 30 47
|
syl2anc |
|
49 |
|
xmulcl |
|
50 |
38 31 49
|
syl2anc |
|
51 |
|
xnegdi |
|
52 |
48 50 51
|
syl2anc |
|
53 |
46 52
|
eqtr4d |
|
54 |
37 41 53
|
3eqtr3d |
|
55 |
|
xmulcl |
|
56 |
38 39 55
|
syl2anc |
|
57 |
|
xaddcl |
|
58 |
48 50 57
|
syl2anc |
|
59 |
|
xneg11 |
|
60 |
56 58 59
|
syl2anc |
|
61 |
54 60
|
mpbid |
|
62 |
|
0re |
|
63 |
|
lttri4 |
|
64 |
62 24 63
|
sylancr |
|
65 |
1 23 61 64
|
mpjao3dan |
|