Metamath Proof Explorer


Theorem xadddi2r

Description: Commuted version of xadddi2 . (Contributed by Mario Carneiro, 20-Aug-2015)

Ref Expression
Assertion xadddi2r A * 0 A B * 0 B C * A + 𝑒 B 𝑒 C = A 𝑒 C + 𝑒 B 𝑒 C

Proof

Step Hyp Ref Expression
1 xadddi2 C * A * 0 A B * 0 B C 𝑒 A + 𝑒 B = C 𝑒 A + 𝑒 C 𝑒 B
2 1 3coml A * 0 A B * 0 B C * C 𝑒 A + 𝑒 B = C 𝑒 A + 𝑒 C 𝑒 B
3 simp1l A * 0 A B * 0 B C * A *
4 simp2l A * 0 A B * 0 B C * B *
5 xaddcl A * B * A + 𝑒 B *
6 3 4 5 syl2anc A * 0 A B * 0 B C * A + 𝑒 B *
7 simp3 A * 0 A B * 0 B C * C *
8 xmulcom A + 𝑒 B * C * A + 𝑒 B 𝑒 C = C 𝑒 A + 𝑒 B
9 6 7 8 syl2anc A * 0 A B * 0 B C * A + 𝑒 B 𝑒 C = C 𝑒 A + 𝑒 B
10 xmulcom A * C * A 𝑒 C = C 𝑒 A
11 3 7 10 syl2anc A * 0 A B * 0 B C * A 𝑒 C = C 𝑒 A
12 xmulcom B * C * B 𝑒 C = C 𝑒 B
13 4 7 12 syl2anc A * 0 A B * 0 B C * B 𝑒 C = C 𝑒 B
14 11 13 oveq12d A * 0 A B * 0 B C * A 𝑒 C + 𝑒 B 𝑒 C = C 𝑒 A + 𝑒 C 𝑒 B
15 2 9 14 3eqtr4d A * 0 A B * 0 B C * A + 𝑒 B 𝑒 C = A 𝑒 C + 𝑒 B 𝑒 C