Metamath Proof Explorer


Theorem xadddilem

Description: Lemma for xadddi . (Contributed by Mario Carneiro, 20-Aug-2015)

Ref Expression
Assertion xadddilem A B * C * 0 < A A 𝑒 B + 𝑒 C = A 𝑒 B + 𝑒 A 𝑒 C

Proof

Step Hyp Ref Expression
1 simpl1 A B * C * 0 < A A
2 recn A A
3 recn B B
4 recn C C
5 adddi A B C A B + C = A B + A C
6 2 3 4 5 syl3an A B C A B + C = A B + A C
7 6 3expa A B C A B + C = A B + A C
8 readdcl B C B + C
9 rexmul A B + C A 𝑒 B + C = A B + C
10 8 9 sylan2 A B C A 𝑒 B + C = A B + C
11 10 anassrs A B C A 𝑒 B + C = A B + C
12 remulcl A B A B
13 12 adantr A B C A B
14 remulcl A C A C
15 14 adantlr A B C A C
16 13 15 rexaddd A B C A B + 𝑒 A C = A B + A C
17 7 11 16 3eqtr4d A B C A 𝑒 B + C = A B + 𝑒 A C
18 rexadd B C B + 𝑒 C = B + C
19 18 adantll A B C B + 𝑒 C = B + C
20 19 oveq2d A B C A 𝑒 B + 𝑒 C = A 𝑒 B + C
21 rexmul A B A 𝑒 B = A B
22 21 adantr A B C A 𝑒 B = A B
23 rexmul A C A 𝑒 C = A C
24 23 adantlr A B C A 𝑒 C = A C
25 22 24 oveq12d A B C A 𝑒 B + 𝑒 A 𝑒 C = A B + 𝑒 A C
26 17 20 25 3eqtr4d A B C A 𝑒 B + 𝑒 C = A 𝑒 B + 𝑒 A 𝑒 C
27 1 26 sylanl1 A B * C * 0 < A B C A 𝑒 B + 𝑒 C = A 𝑒 B + 𝑒 A 𝑒 C
28 rexr A A *
29 28 3ad2ant1 A B * C * A *
30 xmulpnf1 A * 0 < A A 𝑒 +∞ = +∞
31 29 30 sylan A B * C * 0 < A A 𝑒 +∞ = +∞
32 31 adantr A B * C * 0 < A B A 𝑒 +∞ = +∞
33 21 12 eqeltrd A B A 𝑒 B
34 1 33 sylan A B * C * 0 < A B A 𝑒 B
35 rexr A 𝑒 B A 𝑒 B *
36 renemnf A 𝑒 B A 𝑒 B −∞
37 xaddpnf1 A 𝑒 B * A 𝑒 B −∞ A 𝑒 B + 𝑒 +∞ = +∞
38 35 36 37 syl2anc A 𝑒 B A 𝑒 B + 𝑒 +∞ = +∞
39 34 38 syl A B * C * 0 < A B A 𝑒 B + 𝑒 +∞ = +∞
40 32 39 eqtr4d A B * C * 0 < A B A 𝑒 +∞ = A 𝑒 B + 𝑒 +∞
41 40 adantr A B * C * 0 < A B C = +∞ A 𝑒 +∞ = A 𝑒 B + 𝑒 +∞
42 oveq2 C = +∞ B + 𝑒 C = B + 𝑒 +∞
43 rexr B B *
44 renemnf B B −∞
45 xaddpnf1 B * B −∞ B + 𝑒 +∞ = +∞
46 43 44 45 syl2anc B B + 𝑒 +∞ = +∞
47 46 adantl A B * C * 0 < A B B + 𝑒 +∞ = +∞
48 42 47 sylan9eqr A B * C * 0 < A B C = +∞ B + 𝑒 C = +∞
49 48 oveq2d A B * C * 0 < A B C = +∞ A 𝑒 B + 𝑒 C = A 𝑒 +∞
50 oveq2 C = +∞ A 𝑒 C = A 𝑒 +∞
51 50 32 sylan9eqr A B * C * 0 < A B C = +∞ A 𝑒 C = +∞
52 51 oveq2d A B * C * 0 < A B C = +∞ A 𝑒 B + 𝑒 A 𝑒 C = A 𝑒 B + 𝑒 +∞
53 41 49 52 3eqtr4d A B * C * 0 < A B C = +∞ A 𝑒 B + 𝑒 C = A 𝑒 B + 𝑒 A 𝑒 C
54 xmulmnf1 A * 0 < A A 𝑒 −∞ = −∞
55 29 54 sylan A B * C * 0 < A A 𝑒 −∞ = −∞
56 55 adantr A B * C * 0 < A B A 𝑒 −∞ = −∞
57 56 adantr A B * C * 0 < A B C = −∞ A 𝑒 −∞ = −∞
58 34 adantr A B * C * 0 < A B C = −∞ A 𝑒 B
59 renepnf A 𝑒 B A 𝑒 B +∞
60 xaddmnf1 A 𝑒 B * A 𝑒 B +∞ A 𝑒 B + 𝑒 −∞ = −∞
61 35 59 60 syl2anc A 𝑒 B A 𝑒 B + 𝑒 −∞ = −∞
62 58 61 syl A B * C * 0 < A B C = −∞ A 𝑒 B + 𝑒 −∞ = −∞
63 57 62 eqtr4d A B * C * 0 < A B C = −∞ A 𝑒 −∞ = A 𝑒 B + 𝑒 −∞
64 oveq2 C = −∞ B + 𝑒 C = B + 𝑒 −∞
65 renepnf B B +∞
66 xaddmnf1 B * B +∞ B + 𝑒 −∞ = −∞
67 43 65 66 syl2anc B B + 𝑒 −∞ = −∞
68 67 adantl A B * C * 0 < A B B + 𝑒 −∞ = −∞
69 64 68 sylan9eqr A B * C * 0 < A B C = −∞ B + 𝑒 C = −∞
70 69 oveq2d A B * C * 0 < A B C = −∞ A 𝑒 B + 𝑒 C = A 𝑒 −∞
71 oveq2 C = −∞ A 𝑒 C = A 𝑒 −∞
72 71 56 sylan9eqr A B * C * 0 < A B C = −∞ A 𝑒 C = −∞
73 72 oveq2d A B * C * 0 < A B C = −∞ A 𝑒 B + 𝑒 A 𝑒 C = A 𝑒 B + 𝑒 −∞
74 63 70 73 3eqtr4d A B * C * 0 < A B C = −∞ A 𝑒 B + 𝑒 C = A 𝑒 B + 𝑒 A 𝑒 C
75 simpl3 A B * C * 0 < A C *
76 elxr C * C C = +∞ C = −∞
77 75 76 sylib A B * C * 0 < A C C = +∞ C = −∞
78 77 adantr A B * C * 0 < A B C C = +∞ C = −∞
79 27 53 74 78 mpjao3dan A B * C * 0 < A B A 𝑒 B + 𝑒 C = A 𝑒 B + 𝑒 A 𝑒 C
80 31 ad2antrr A B * C * 0 < A B = +∞ C A 𝑒 +∞ = +∞
81 1 adantr A B * C * 0 < A B = +∞ A
82 23 14 eqeltrd A C A 𝑒 C
83 81 82 sylan A B * C * 0 < A B = +∞ C A 𝑒 C
84 rexr A 𝑒 C A 𝑒 C *
85 renemnf A 𝑒 C A 𝑒 C −∞
86 xaddpnf2 A 𝑒 C * A 𝑒 C −∞ +∞ + 𝑒 A 𝑒 C = +∞
87 84 85 86 syl2anc A 𝑒 C +∞ + 𝑒 A 𝑒 C = +∞
88 83 87 syl A B * C * 0 < A B = +∞ C +∞ + 𝑒 A 𝑒 C = +∞
89 80 88 eqtr4d A B * C * 0 < A B = +∞ C A 𝑒 +∞ = +∞ + 𝑒 A 𝑒 C
90 simpr A B * C * 0 < A B = +∞ B = +∞
91 90 oveq1d A B * C * 0 < A B = +∞ B + 𝑒 C = +∞ + 𝑒 C
92 rexr C C *
93 renemnf C C −∞
94 xaddpnf2 C * C −∞ +∞ + 𝑒 C = +∞
95 92 93 94 syl2anc C +∞ + 𝑒 C = +∞
96 91 95 sylan9eq A B * C * 0 < A B = +∞ C B + 𝑒 C = +∞
97 96 oveq2d A B * C * 0 < A B = +∞ C A 𝑒 B + 𝑒 C = A 𝑒 +∞
98 oveq2 B = +∞ A 𝑒 B = A 𝑒 +∞
99 98 31 sylan9eqr A B * C * 0 < A B = +∞ A 𝑒 B = +∞
100 99 adantr A B * C * 0 < A B = +∞ C A 𝑒 B = +∞
101 100 oveq1d A B * C * 0 < A B = +∞ C A 𝑒 B + 𝑒 A 𝑒 C = +∞ + 𝑒 A 𝑒 C
102 89 97 101 3eqtr4d A B * C * 0 < A B = +∞ C A 𝑒 B + 𝑒 C = A 𝑒 B + 𝑒 A 𝑒 C
103 pnfxr +∞ *
104 pnfnemnf +∞ −∞
105 xaddpnf1 +∞ * +∞ −∞ +∞ + 𝑒 +∞ = +∞
106 103 104 105 mp2an +∞ + 𝑒 +∞ = +∞
107 31 31 oveq12d A B * C * 0 < A A 𝑒 +∞ + 𝑒 A 𝑒 +∞ = +∞ + 𝑒 +∞
108 106 107 31 3eqtr4a A B * C * 0 < A A 𝑒 +∞ + 𝑒 A 𝑒 +∞ = A 𝑒 +∞
109 108 ad2antrr A B * C * 0 < A B = +∞ C = +∞ A 𝑒 +∞ + 𝑒 A 𝑒 +∞ = A 𝑒 +∞
110 98 50 oveqan12d B = +∞ C = +∞ A 𝑒 B + 𝑒 A 𝑒 C = A 𝑒 +∞ + 𝑒 A 𝑒 +∞
111 110 adantll A B * C * 0 < A B = +∞ C = +∞ A 𝑒 B + 𝑒 A 𝑒 C = A 𝑒 +∞ + 𝑒 A 𝑒 +∞
112 oveq12 B = +∞ C = +∞ B + 𝑒 C = +∞ + 𝑒 +∞
113 112 106 eqtrdi B = +∞ C = +∞ B + 𝑒 C = +∞
114 113 oveq2d B = +∞ C = +∞ A 𝑒 B + 𝑒 C = A 𝑒 +∞
115 114 adantll A B * C * 0 < A B = +∞ C = +∞ A 𝑒 B + 𝑒 C = A 𝑒 +∞
116 109 111 115 3eqtr4rd A B * C * 0 < A B = +∞ C = +∞ A 𝑒 B + 𝑒 C = A 𝑒 B + 𝑒 A 𝑒 C
117 pnfaddmnf +∞ + 𝑒 −∞ = 0
118 31 55 oveq12d A B * C * 0 < A A 𝑒 +∞ + 𝑒 A 𝑒 −∞ = +∞ + 𝑒 −∞
119 xmul01 A * A 𝑒 0 = 0
120 1 28 119 3syl A B * C * 0 < A A 𝑒 0 = 0
121 117 118 120 3eqtr4a A B * C * 0 < A A 𝑒 +∞ + 𝑒 A 𝑒 −∞ = A 𝑒 0
122 121 ad2antrr A B * C * 0 < A B = +∞ C = −∞ A 𝑒 +∞ + 𝑒 A 𝑒 −∞ = A 𝑒 0
123 98 71 oveqan12d B = +∞ C = −∞ A 𝑒 B + 𝑒 A 𝑒 C = A 𝑒 +∞ + 𝑒 A 𝑒 −∞
124 123 adantll A B * C * 0 < A B = +∞ C = −∞ A 𝑒 B + 𝑒 A 𝑒 C = A 𝑒 +∞ + 𝑒 A 𝑒 −∞
125 oveq12 B = +∞ C = −∞ B + 𝑒 C = +∞ + 𝑒 −∞
126 125 117 eqtrdi B = +∞ C = −∞ B + 𝑒 C = 0
127 126 oveq2d B = +∞ C = −∞ A 𝑒 B + 𝑒 C = A 𝑒 0
128 127 adantll A B * C * 0 < A B = +∞ C = −∞ A 𝑒 B + 𝑒 C = A 𝑒 0
129 122 124 128 3eqtr4rd A B * C * 0 < A B = +∞ C = −∞ A 𝑒 B + 𝑒 C = A 𝑒 B + 𝑒 A 𝑒 C
130 77 adantr A B * C * 0 < A B = +∞ C C = +∞ C = −∞
131 102 116 129 130 mpjao3dan A B * C * 0 < A B = +∞ A 𝑒 B + 𝑒 C = A 𝑒 B + 𝑒 A 𝑒 C
132 55 ad2antrr A B * C * 0 < A B = −∞ C A 𝑒 −∞ = −∞
133 1 adantr A B * C * 0 < A B = −∞ A
134 133 82 sylan A B * C * 0 < A B = −∞ C A 𝑒 C
135 renepnf A 𝑒 C A 𝑒 C +∞
136 xaddmnf2 A 𝑒 C * A 𝑒 C +∞ −∞ + 𝑒 A 𝑒 C = −∞
137 84 135 136 syl2anc A 𝑒 C −∞ + 𝑒 A 𝑒 C = −∞
138 134 137 syl A B * C * 0 < A B = −∞ C −∞ + 𝑒 A 𝑒 C = −∞
139 132 138 eqtr4d A B * C * 0 < A B = −∞ C A 𝑒 −∞ = −∞ + 𝑒 A 𝑒 C
140 simpr A B * C * 0 < A B = −∞ B = −∞
141 140 oveq1d A B * C * 0 < A B = −∞ B + 𝑒 C = −∞ + 𝑒 C
142 renepnf C C +∞
143 xaddmnf2 C * C +∞ −∞ + 𝑒 C = −∞
144 92 142 143 syl2anc C −∞ + 𝑒 C = −∞
145 141 144 sylan9eq A B * C * 0 < A B = −∞ C B + 𝑒 C = −∞
146 145 oveq2d A B * C * 0 < A B = −∞ C A 𝑒 B + 𝑒 C = A 𝑒 −∞
147 oveq2 B = −∞ A 𝑒 B = A 𝑒 −∞
148 147 55 sylan9eqr A B * C * 0 < A B = −∞ A 𝑒 B = −∞
149 148 adantr A B * C * 0 < A B = −∞ C A 𝑒 B = −∞
150 149 oveq1d A B * C * 0 < A B = −∞ C A 𝑒 B + 𝑒 A 𝑒 C = −∞ + 𝑒 A 𝑒 C
151 139 146 150 3eqtr4d A B * C * 0 < A B = −∞ C A 𝑒 B + 𝑒 C = A 𝑒 B + 𝑒 A 𝑒 C
152 55 31 oveq12d A B * C * 0 < A A 𝑒 −∞ + 𝑒 A 𝑒 +∞ = −∞ + 𝑒 +∞
153 mnfaddpnf −∞ + 𝑒 +∞ = 0
154 152 153 eqtrdi A B * C * 0 < A A 𝑒 −∞ + 𝑒 A 𝑒 +∞ = 0
155 120 154 eqtr4d A B * C * 0 < A A 𝑒 0 = A 𝑒 −∞ + 𝑒 A 𝑒 +∞
156 155 ad2antrr A B * C * 0 < A B = −∞ C = +∞ A 𝑒 0 = A 𝑒 −∞ + 𝑒 A 𝑒 +∞
157 oveq12 B = −∞ C = +∞ B + 𝑒 C = −∞ + 𝑒 +∞
158 157 153 eqtrdi B = −∞ C = +∞ B + 𝑒 C = 0
159 158 oveq2d B = −∞ C = +∞ A 𝑒 B + 𝑒 C = A 𝑒 0
160 159 adantll A B * C * 0 < A B = −∞ C = +∞ A 𝑒 B + 𝑒 C = A 𝑒 0
161 147 50 oveqan12d B = −∞ C = +∞ A 𝑒 B + 𝑒 A 𝑒 C = A 𝑒 −∞ + 𝑒 A 𝑒 +∞
162 161 adantll A B * C * 0 < A B = −∞ C = +∞ A 𝑒 B + 𝑒 A 𝑒 C = A 𝑒 −∞ + 𝑒 A 𝑒 +∞
163 156 160 162 3eqtr4d A B * C * 0 < A B = −∞ C = +∞ A 𝑒 B + 𝑒 C = A 𝑒 B + 𝑒 A 𝑒 C
164 mnfxr −∞ *
165 mnfnepnf −∞ +∞
166 xaddmnf1 −∞ * −∞ +∞ −∞ + 𝑒 −∞ = −∞
167 164 165 166 mp2an −∞ + 𝑒 −∞ = −∞
168 55 55 oveq12d A B * C * 0 < A A 𝑒 −∞ + 𝑒 A 𝑒 −∞ = −∞ + 𝑒 −∞
169 167 168 55 3eqtr4a A B * C * 0 < A A 𝑒 −∞ + 𝑒 A 𝑒 −∞ = A 𝑒 −∞
170 169 ad2antrr A B * C * 0 < A B = −∞ C = −∞ A 𝑒 −∞ + 𝑒 A 𝑒 −∞ = A 𝑒 −∞
171 147 71 oveqan12d B = −∞ C = −∞ A 𝑒 B + 𝑒 A 𝑒 C = A 𝑒 −∞ + 𝑒 A 𝑒 −∞
172 171 adantll A B * C * 0 < A B = −∞ C = −∞ A 𝑒 B + 𝑒 A 𝑒 C = A 𝑒 −∞ + 𝑒 A 𝑒 −∞
173 oveq12 B = −∞ C = −∞ B + 𝑒 C = −∞ + 𝑒 −∞
174 173 167 eqtrdi B = −∞ C = −∞ B + 𝑒 C = −∞
175 174 oveq2d B = −∞ C = −∞ A 𝑒 B + 𝑒 C = A 𝑒 −∞
176 175 adantll A B * C * 0 < A B = −∞ C = −∞ A 𝑒 B + 𝑒 C = A 𝑒 −∞
177 170 172 176 3eqtr4rd A B * C * 0 < A B = −∞ C = −∞ A 𝑒 B + 𝑒 C = A 𝑒 B + 𝑒 A 𝑒 C
178 77 adantr A B * C * 0 < A B = −∞ C C = +∞ C = −∞
179 151 163 177 178 mpjao3dan A B * C * 0 < A B = −∞ A 𝑒 B + 𝑒 C = A 𝑒 B + 𝑒 A 𝑒 C
180 simpl2 A B * C * 0 < A B *
181 elxr B * B B = +∞ B = −∞
182 180 181 sylib A B * C * 0 < A B B = +∞ B = −∞
183 79 131 179 182 mpjao3dan A B * C * 0 < A A 𝑒 B + 𝑒 C = A 𝑒 B + 𝑒 A 𝑒 C