Metamath Proof Explorer


Theorem xadddir

Description: Commuted version of xadddi . (Contributed by Mario Carneiro, 20-Aug-2015)

Ref Expression
Assertion xadddir A * B * C A + 𝑒 B 𝑒 C = A 𝑒 C + 𝑒 B 𝑒 C

Proof

Step Hyp Ref Expression
1 xadddi C A * B * C 𝑒 A + 𝑒 B = C 𝑒 A + 𝑒 C 𝑒 B
2 1 3coml A * B * C C 𝑒 A + 𝑒 B = C 𝑒 A + 𝑒 C 𝑒 B
3 xaddcl A * B * A + 𝑒 B *
4 3 3adant3 A * B * C A + 𝑒 B *
5 rexr C C *
6 5 3ad2ant3 A * B * C C *
7 xmulcom A + 𝑒 B * C * A + 𝑒 B 𝑒 C = C 𝑒 A + 𝑒 B
8 4 6 7 syl2anc A * B * C A + 𝑒 B 𝑒 C = C 𝑒 A + 𝑒 B
9 simp1 A * B * C A *
10 xmulcom A * C * A 𝑒 C = C 𝑒 A
11 9 6 10 syl2anc A * B * C A 𝑒 C = C 𝑒 A
12 simp2 A * B * C B *
13 xmulcom B * C * B 𝑒 C = C 𝑒 B
14 12 6 13 syl2anc A * B * C B 𝑒 C = C 𝑒 B
15 11 14 oveq12d A * B * C A 𝑒 C + 𝑒 B 𝑒 C = C 𝑒 A + 𝑒 C 𝑒 B
16 2 8 15 3eqtr4d A * B * C A + 𝑒 B 𝑒 C = A 𝑒 C + 𝑒 B 𝑒 C