Metamath Proof Explorer


Theorem xaddge0

Description: The sum of nonnegative extended reals is nonnegative. (Contributed by Mario Carneiro, 21-Aug-2015)

Ref Expression
Assertion xaddge0 A * B * 0 A 0 B 0 A + 𝑒 B

Proof

Step Hyp Ref Expression
1 0xr 0 *
2 1 a1i A * B * 0 A 0 B 0 *
3 simplr A * B * 0 A 0 B B *
4 xaddcl A * B * A + 𝑒 B *
5 4 adantr A * B * 0 A 0 B A + 𝑒 B *
6 simprr A * B * 0 A 0 B 0 B
7 xaddid2 B * 0 + 𝑒 B = B
8 3 7 syl A * B * 0 A 0 B 0 + 𝑒 B = B
9 simpll A * B * 0 A 0 B A *
10 simprl A * B * 0 A 0 B 0 A
11 xleadd1a 0 * A * B * 0 A 0 + 𝑒 B A + 𝑒 B
12 2 9 3 10 11 syl31anc A * B * 0 A 0 B 0 + 𝑒 B A + 𝑒 B
13 8 12 eqbrtrrd A * B * 0 A 0 B B A + 𝑒 B
14 2 3 5 6 13 xrletrd A * B * 0 A 0 B 0 A + 𝑒 B