Metamath Proof Explorer


Theorem xaddid1

Description: Extended real version of addid1 . (Contributed by Mario Carneiro, 20-Aug-2015)

Ref Expression
Assertion xaddid1 A * A + 𝑒 0 = A

Proof

Step Hyp Ref Expression
1 elxr A * A A = +∞ A = −∞
2 0re 0
3 rexadd A 0 A + 𝑒 0 = A + 0
4 2 3 mpan2 A A + 𝑒 0 = A + 0
5 recn A A
6 5 addid1d A A + 0 = A
7 4 6 eqtrd A A + 𝑒 0 = A
8 0xr 0 *
9 renemnf 0 0 −∞
10 2 9 ax-mp 0 −∞
11 xaddpnf2 0 * 0 −∞ +∞ + 𝑒 0 = +∞
12 8 10 11 mp2an +∞ + 𝑒 0 = +∞
13 oveq1 A = +∞ A + 𝑒 0 = +∞ + 𝑒 0
14 id A = +∞ A = +∞
15 12 13 14 3eqtr4a A = +∞ A + 𝑒 0 = A
16 renepnf 0 0 +∞
17 2 16 ax-mp 0 +∞
18 xaddmnf2 0 * 0 +∞ −∞ + 𝑒 0 = −∞
19 8 17 18 mp2an −∞ + 𝑒 0 = −∞
20 oveq1 A = −∞ A + 𝑒 0 = −∞ + 𝑒 0
21 id A = −∞ A = −∞
22 19 20 21 3eqtr4a A = −∞ A + 𝑒 0 = A
23 7 15 22 3jaoi A A = +∞ A = −∞ A + 𝑒 0 = A
24 1 23 sylbi A * A + 𝑒 0 = A