Metamath Proof Explorer


Theorem xaddid1d

Description: 0 is a right identity for extended real addition. (Contributed by Glauco Siliprandi, 17-Aug-2020)

Ref Expression
Hypothesis xaddid1d.1 φ A *
Assertion xaddid1d φ A + 𝑒 0 = A

Proof

Step Hyp Ref Expression
1 xaddid1d.1 φ A *
2 xaddid1 A * A + 𝑒 0 = A
3 1 2 syl φ A + 𝑒 0 = A