Metamath Proof Explorer


Theorem xaddid2

Description: Extended real version of addid2 . (Contributed by Mario Carneiro, 20-Aug-2015)

Ref Expression
Assertion xaddid2 A * 0 + 𝑒 A = A

Proof

Step Hyp Ref Expression
1 0xr 0 *
2 xaddcom 0 * A * 0 + 𝑒 A = A + 𝑒 0
3 1 2 mpan A * 0 + 𝑒 A = A + 𝑒 0
4 xaddid1 A * A + 𝑒 0 = A
5 3 4 eqtrd A * 0 + 𝑒 A = A