Metamath Proof Explorer


Theorem xaddlidd

Description: 0 is a left identity for extended real addition. (Contributed by Glauco Siliprandi, 17-Aug-2020)

Ref Expression
Hypothesis xaddlidd.1 φ A *
Assertion xaddlidd φ 0 + 𝑒 A = A

Proof

Step Hyp Ref Expression
1 xaddlidd.1 φ A *
2 xaddlid A * 0 + 𝑒 A = A
3 1 2 syl φ 0 + 𝑒 A = A