Metamath Proof Explorer


Theorem xaddnepnf

Description: Closure of extended real addition in the subset RR* / { +oo } . (Contributed by Mario Carneiro, 20-Aug-2015)

Ref Expression
Assertion xaddnepnf A * A +∞ B * B +∞ A + 𝑒 B +∞

Proof

Step Hyp Ref Expression
1 xrnepnf A * A +∞ A A = −∞
2 xrnepnf B * B +∞ B B = −∞
3 rexadd A B A + 𝑒 B = A + B
4 readdcl A B A + B
5 3 4 eqeltrd A B A + 𝑒 B
6 5 renepnfd A B A + 𝑒 B +∞
7 oveq2 B = −∞ A + 𝑒 B = A + 𝑒 −∞
8 rexr A A *
9 renepnf A A +∞
10 xaddmnf1 A * A +∞ A + 𝑒 −∞ = −∞
11 8 9 10 syl2anc A A + 𝑒 −∞ = −∞
12 7 11 sylan9eqr A B = −∞ A + 𝑒 B = −∞
13 mnfnepnf −∞ +∞
14 13 a1i A B = −∞ −∞ +∞
15 12 14 eqnetrd A B = −∞ A + 𝑒 B +∞
16 6 15 jaodan A B B = −∞ A + 𝑒 B +∞
17 2 16 sylan2b A B * B +∞ A + 𝑒 B +∞
18 oveq1 A = −∞ A + 𝑒 B = −∞ + 𝑒 B
19 xaddmnf2 B * B +∞ −∞ + 𝑒 B = −∞
20 18 19 sylan9eq A = −∞ B * B +∞ A + 𝑒 B = −∞
21 13 a1i A = −∞ B * B +∞ −∞ +∞
22 20 21 eqnetrd A = −∞ B * B +∞ A + 𝑒 B +∞
23 17 22 jaoian A A = −∞ B * B +∞ A + 𝑒 B +∞
24 1 23 sylanb A * A +∞ B * B +∞ A + 𝑒 B +∞