Metamath Proof Explorer


Theorem xaddpnf1

Description: Addition of positive infinity on the right. (Contributed by Mario Carneiro, 20-Aug-2015)

Ref Expression
Assertion xaddpnf1 A * A −∞ A + 𝑒 +∞ = +∞

Proof

Step Hyp Ref Expression
1 pnfxr +∞ *
2 xaddval A * +∞ * A + 𝑒 +∞ = if A = +∞ if +∞ = −∞ 0 +∞ if A = −∞ if +∞ = +∞ 0 −∞ if +∞ = +∞ +∞ if +∞ = −∞ −∞ A + +∞
3 1 2 mpan2 A * A + 𝑒 +∞ = if A = +∞ if +∞ = −∞ 0 +∞ if A = −∞ if +∞ = +∞ 0 −∞ if +∞ = +∞ +∞ if +∞ = −∞ −∞ A + +∞
4 pnfnemnf +∞ −∞
5 ifnefalse +∞ −∞ if +∞ = −∞ 0 +∞ = +∞
6 4 5 mp1i A −∞ if +∞ = −∞ 0 +∞ = +∞
7 ifnefalse A −∞ if A = −∞ if +∞ = +∞ 0 −∞ if +∞ = +∞ +∞ if +∞ = −∞ −∞ A + +∞ = if +∞ = +∞ +∞ if +∞ = −∞ −∞ A + +∞
8 eqid +∞ = +∞
9 8 iftruei if +∞ = +∞ +∞ if +∞ = −∞ −∞ A + +∞ = +∞
10 7 9 eqtrdi A −∞ if A = −∞ if +∞ = +∞ 0 −∞ if +∞ = +∞ +∞ if +∞ = −∞ −∞ A + +∞ = +∞
11 6 10 ifeq12d A −∞ if A = +∞ if +∞ = −∞ 0 +∞ if A = −∞ if +∞ = +∞ 0 −∞ if +∞ = +∞ +∞ if +∞ = −∞ −∞ A + +∞ = if A = +∞ +∞ +∞
12 ifid if A = +∞ +∞ +∞ = +∞
13 11 12 eqtrdi A −∞ if A = +∞ if +∞ = −∞ 0 +∞ if A = −∞ if +∞ = +∞ 0 −∞ if +∞ = +∞ +∞ if +∞ = −∞ −∞ A + +∞ = +∞
14 3 13 sylan9eq A * A −∞ A + 𝑒 +∞ = +∞