Metamath Proof Explorer


Theorem xaddpnf2

Description: Addition of positive infinity on the left. (Contributed by Mario Carneiro, 20-Aug-2015)

Ref Expression
Assertion xaddpnf2 A * A −∞ +∞ + 𝑒 A = +∞

Proof

Step Hyp Ref Expression
1 pnfxr +∞ *
2 xaddval +∞ * A * +∞ + 𝑒 A = if +∞ = +∞ if A = −∞ 0 +∞ if +∞ = −∞ if A = +∞ 0 −∞ if A = +∞ +∞ if A = −∞ −∞ +∞ + A
3 1 2 mpan A * +∞ + 𝑒 A = if +∞ = +∞ if A = −∞ 0 +∞ if +∞ = −∞ if A = +∞ 0 −∞ if A = +∞ +∞ if A = −∞ −∞ +∞ + A
4 eqid +∞ = +∞
5 4 iftruei if +∞ = +∞ if A = −∞ 0 +∞ if +∞ = −∞ if A = +∞ 0 −∞ if A = +∞ +∞ if A = −∞ −∞ +∞ + A = if A = −∞ 0 +∞
6 ifnefalse A −∞ if A = −∞ 0 +∞ = +∞
7 5 6 eqtrid A −∞ if +∞ = +∞ if A = −∞ 0 +∞ if +∞ = −∞ if A = +∞ 0 −∞ if A = +∞ +∞ if A = −∞ −∞ +∞ + A = +∞
8 3 7 sylan9eq A * A −∞ +∞ + 𝑒 A = +∞