Database
REAL AND COMPLEX NUMBERS
Order sets
Infinity and the extended real number system (cont.)
xaddpnf2
Next ⟩
xaddmnf1
Metamath Proof Explorer
Ascii
Unicode
Theorem
xaddpnf2
Description:
Addition of positive infinity on the left.
(Contributed by
Mario Carneiro
, 20-Aug-2015)
Ref
Expression
Assertion
xaddpnf2
⊢
A
∈
ℝ
*
∧
A
≠
−∞
→
+∞
+
𝑒
A
=
+∞
Proof
Step
Hyp
Ref
Expression
1
pnfxr
⊢
+∞
∈
ℝ
*
2
xaddval
⊢
+∞
∈
ℝ
*
∧
A
∈
ℝ
*
→
+∞
+
𝑒
A
=
if
+∞
=
+∞
if
A
=
−∞
0
+∞
if
+∞
=
−∞
if
A
=
+∞
0
−∞
if
A
=
+∞
+∞
if
A
=
−∞
−∞
+∞
+
A
3
1
2
mpan
⊢
A
∈
ℝ
*
→
+∞
+
𝑒
A
=
if
+∞
=
+∞
if
A
=
−∞
0
+∞
if
+∞
=
−∞
if
A
=
+∞
0
−∞
if
A
=
+∞
+∞
if
A
=
−∞
−∞
+∞
+
A
4
eqid
⊢
+∞
=
+∞
5
4
iftruei
⊢
if
+∞
=
+∞
if
A
=
−∞
0
+∞
if
+∞
=
−∞
if
A
=
+∞
0
−∞
if
A
=
+∞
+∞
if
A
=
−∞
−∞
+∞
+
A
=
if
A
=
−∞
0
+∞
6
ifnefalse
⊢
A
≠
−∞
→
if
A
=
−∞
0
+∞
=
+∞
7
5
6
eqtrid
⊢
A
≠
−∞
→
if
+∞
=
+∞
if
A
=
−∞
0
+∞
if
+∞
=
−∞
if
A
=
+∞
0
−∞
if
A
=
+∞
+∞
if
A
=
−∞
−∞
+∞
+
A
=
+∞
8
3
7
sylan9eq
⊢
A
∈
ℝ
*
∧
A
≠
−∞
→
+∞
+
𝑒
A
=
+∞