Metamath Proof Explorer


Theorem xaddval

Description: Value of the extended real addition operation. (Contributed by Mario Carneiro, 20-Aug-2015)

Ref Expression
Assertion xaddval A * B * A + 𝑒 B = if A = +∞ if B = −∞ 0 +∞ if A = −∞ if B = +∞ 0 −∞ if B = +∞ +∞ if B = −∞ −∞ A + B

Proof

Step Hyp Ref Expression
1 simpl x = A y = B x = A
2 1 eqeq1d x = A y = B x = +∞ A = +∞
3 simpr x = A y = B y = B
4 3 eqeq1d x = A y = B y = −∞ B = −∞
5 4 ifbid x = A y = B if y = −∞ 0 +∞ = if B = −∞ 0 +∞
6 1 eqeq1d x = A y = B x = −∞ A = −∞
7 3 eqeq1d x = A y = B y = +∞ B = +∞
8 7 ifbid x = A y = B if y = +∞ 0 −∞ = if B = +∞ 0 −∞
9 oveq12 x = A y = B x + y = A + B
10 4 9 ifbieq2d x = A y = B if y = −∞ −∞ x + y = if B = −∞ −∞ A + B
11 7 10 ifbieq2d x = A y = B if y = +∞ +∞ if y = −∞ −∞ x + y = if B = +∞ +∞ if B = −∞ −∞ A + B
12 6 8 11 ifbieq12d x = A y = B if x = −∞ if y = +∞ 0 −∞ if y = +∞ +∞ if y = −∞ −∞ x + y = if A = −∞ if B = +∞ 0 −∞ if B = +∞ +∞ if B = −∞ −∞ A + B
13 2 5 12 ifbieq12d x = A y = B if x = +∞ if y = −∞ 0 +∞ if x = −∞ if y = +∞ 0 −∞ if y = +∞ +∞ if y = −∞ −∞ x + y = if A = +∞ if B = −∞ 0 +∞ if A = −∞ if B = +∞ 0 −∞ if B = +∞ +∞ if B = −∞ −∞ A + B
14 df-xadd + 𝑒 = x * , y * if x = +∞ if y = −∞ 0 +∞ if x = −∞ if y = +∞ 0 −∞ if y = +∞ +∞ if y = −∞ −∞ x + y
15 c0ex 0 V
16 pnfex +∞ V
17 15 16 ifex if B = −∞ 0 +∞ V
18 mnfxr −∞ *
19 18 elexi −∞ V
20 15 19 ifex if B = +∞ 0 −∞ V
21 ovex A + B V
22 19 21 ifex if B = −∞ −∞ A + B V
23 16 22 ifex if B = +∞ +∞ if B = −∞ −∞ A + B V
24 20 23 ifex if A = −∞ if B = +∞ 0 −∞ if B = +∞ +∞ if B = −∞ −∞ A + B V
25 17 24 ifex if A = +∞ if B = −∞ 0 +∞ if A = −∞ if B = +∞ 0 −∞ if B = +∞ +∞ if B = −∞ −∞ A + B V
26 13 14 25 ovmpoa A * B * A + 𝑒 B = if A = +∞ if B = −∞ 0 +∞ if A = −∞ if B = +∞ 0 −∞ if B = +∞ +∞ if B = −∞ −∞ A + B