Metamath Proof Explorer


Theorem xbln0

Description: A ball is nonempty iff the radius is positive. (Contributed by Mario Carneiro, 23-Aug-2015)

Ref Expression
Assertion xbln0 D ∞Met X P X R * P ball D R 0 < R

Proof

Step Hyp Ref Expression
1 n0 P ball D R x x P ball D R
2 elbl D ∞Met X P X R * x P ball D R x X P D x < R
3 xmetge0 D ∞Met X P X x X 0 P D x
4 3 3expa D ∞Met X P X x X 0 P D x
5 4 3adantl3 D ∞Met X P X R * x X 0 P D x
6 0xr 0 *
7 xmetcl D ∞Met X P X x X P D x *
8 7 3expa D ∞Met X P X x X P D x *
9 8 3adantl3 D ∞Met X P X R * x X P D x *
10 simpl3 D ∞Met X P X R * x X R *
11 xrlelttr 0 * P D x * R * 0 P D x P D x < R 0 < R
12 6 9 10 11 mp3an2i D ∞Met X P X R * x X 0 P D x P D x < R 0 < R
13 5 12 mpand D ∞Met X P X R * x X P D x < R 0 < R
14 13 expimpd D ∞Met X P X R * x X P D x < R 0 < R
15 2 14 sylbid D ∞Met X P X R * x P ball D R 0 < R
16 15 exlimdv D ∞Met X P X R * x x P ball D R 0 < R
17 1 16 syl5bi D ∞Met X P X R * P ball D R 0 < R
18 xblcntr D ∞Met X P X R * 0 < R P P ball D R
19 18 ne0d D ∞Met X P X R * 0 < R P ball D R
20 19 3expa D ∞Met X P X R * 0 < R P ball D R
21 20 expr D ∞Met X P X R * 0 < R P ball D R
22 21 3impa D ∞Met X P X R * 0 < R P ball D R
23 17 22 impbid D ∞Met X P X R * P ball D R 0 < R