Metamath Proof Explorer


Theorem xblpnf

Description: The infinity ball in an extended metric is the set of all points that are a finite distance from the center. (Contributed by Mario Carneiro, 23-Aug-2015)

Ref Expression
Assertion xblpnf D ∞Met X P X A P ball D +∞ A X P D A

Proof

Step Hyp Ref Expression
1 pnfxr +∞ *
2 elbl D ∞Met X P X +∞ * A P ball D +∞ A X P D A < +∞
3 1 2 mp3an3 D ∞Met X P X A P ball D +∞ A X P D A < +∞
4 xmetcl D ∞Met X P X A X P D A *
5 xmetge0 D ∞Met X P X A X 0 P D A
6 ge0nemnf P D A * 0 P D A P D A −∞
7 4 5 6 syl2anc D ∞Met X P X A X P D A −∞
8 ngtmnft P D A * P D A = −∞ ¬ −∞ < P D A
9 4 8 syl D ∞Met X P X A X P D A = −∞ ¬ −∞ < P D A
10 9 necon2abid D ∞Met X P X A X −∞ < P D A P D A −∞
11 7 10 mpbird D ∞Met X P X A X −∞ < P D A
12 11 biantrurd D ∞Met X P X A X P D A < +∞ −∞ < P D A P D A < +∞
13 xrrebnd P D A * P D A −∞ < P D A P D A < +∞
14 4 13 syl D ∞Met X P X A X P D A −∞ < P D A P D A < +∞
15 12 14 bitr4d D ∞Met X P X A X P D A < +∞ P D A
16 15 3expa D ∞Met X P X A X P D A < +∞ P D A
17 16 pm5.32da D ∞Met X P X A X P D A < +∞ A X P D A
18 3 17 bitrd D ∞Met X P X A P ball D +∞ A X P D A