Metamath Proof Explorer


Theorem xchnxbi

Description: Replacement of a subexpression by an equivalent one. (Contributed by Wolf Lammen, 27-Sep-2014)

Ref Expression
Hypotheses xchnxbi.1 ¬ φ ψ
xchnxbi.2 φ χ
Assertion xchnxbi ¬ χ ψ

Proof

Step Hyp Ref Expression
1 xchnxbi.1 ¬ φ ψ
2 xchnxbi.2 φ χ
3 2 notbii ¬ φ ¬ χ
4 3 1 bitr3i ¬ χ ψ