Metamath Proof Explorer


Theorem xchnxbir

Description: Replacement of a subexpression by an equivalent one. (Contributed by Wolf Lammen, 27-Sep-2014)

Ref Expression
Hypotheses xchnxbir.1 ¬ φ ψ
xchnxbir.2 χ φ
Assertion xchnxbir ¬ χ ψ

Proof

Step Hyp Ref Expression
1 xchnxbir.1 ¬ φ ψ
2 xchnxbir.2 χ φ
3 2 bicomi φ χ
4 1 3 xchnxbi ¬ χ ψ