Metamath Proof Explorer


Theorem xkobval

Description: Alternative expression for the subbase of the compact-open topology. (Contributed by Mario Carneiro, 23-Mar-2015)

Ref Expression
Hypotheses xkoval.x X = R
xkoval.k K = x 𝒫 X | R 𝑡 x Comp
xkoval.t T = k K , v S f R Cn S | f k v
Assertion xkobval ran T = s | k 𝒫 X v S R 𝑡 k Comp s = f R Cn S | f k v

Proof

Step Hyp Ref Expression
1 xkoval.x X = R
2 xkoval.k K = x 𝒫 X | R 𝑡 x Comp
3 xkoval.t T = k K , v S f R Cn S | f k v
4 3 rnmpo ran T = s | k K v S s = f R Cn S | f k v
5 oveq2 x = k R 𝑡 x = R 𝑡 k
6 5 eleq1d x = k R 𝑡 x Comp R 𝑡 k Comp
7 6 rexrab k x 𝒫 X | R 𝑡 x Comp v S s = f R Cn S | f k v k 𝒫 X R 𝑡 k Comp v S s = f R Cn S | f k v
8 2 rexeqi k K v S s = f R Cn S | f k v k x 𝒫 X | R 𝑡 x Comp v S s = f R Cn S | f k v
9 r19.42v v S R 𝑡 k Comp s = f R Cn S | f k v R 𝑡 k Comp v S s = f R Cn S | f k v
10 9 rexbii k 𝒫 X v S R 𝑡 k Comp s = f R Cn S | f k v k 𝒫 X R 𝑡 k Comp v S s = f R Cn S | f k v
11 7 8 10 3bitr4i k K v S s = f R Cn S | f k v k 𝒫 X v S R 𝑡 k Comp s = f R Cn S | f k v
12 11 abbii s | k K v S s = f R Cn S | f k v = s | k 𝒫 X v S R 𝑡 k Comp s = f R Cn S | f k v
13 4 12 eqtri ran T = s | k 𝒫 X v S R 𝑡 k Comp s = f R Cn S | f k v