| Step |
Hyp |
Ref |
Expression |
| 1 |
|
xkoco1cn.t |
|
| 2 |
|
xkoco1cn.f |
|
| 3 |
|
cnco |
|
| 4 |
2 3
|
sylan |
|
| 5 |
4
|
fmpttd |
|
| 6 |
|
eqid |
|
| 7 |
|
eqid |
|
| 8 |
|
eqid |
|
| 9 |
6 7 8
|
xkobval |
|
| 10 |
9
|
eqabri |
|
| 11 |
2
|
ad2antrr |
|
| 12 |
11 3
|
sylan |
|
| 13 |
|
imaeq1 |
|
| 14 |
|
imaco |
|
| 15 |
13 14
|
eqtrdi |
|
| 16 |
15
|
sseq1d |
|
| 17 |
16
|
elrab3 |
|
| 18 |
12 17
|
syl |
|
| 19 |
18
|
rabbidva |
|
| 20 |
|
eqid |
|
| 21 |
|
cntop2 |
|
| 22 |
2 21
|
syl |
|
| 23 |
22
|
ad2antrr |
|
| 24 |
1
|
ad2antrr |
|
| 25 |
|
imassrn |
|
| 26 |
6 20
|
cnf |
|
| 27 |
|
frn |
|
| 28 |
11 26 27
|
3syl |
|
| 29 |
25 28
|
sstrid |
|
| 30 |
|
imacmp |
|
| 31 |
11 30
|
sylancom |
|
| 32 |
|
simplrr |
|
| 33 |
20 23 24 29 31 32
|
xkoopn |
|
| 34 |
19 33
|
eqeltrd |
|
| 35 |
|
imaeq2 |
|
| 36 |
|
eqid |
|
| 37 |
36
|
mptpreima |
|
| 38 |
35 37
|
eqtrdi |
|
| 39 |
38
|
eleq1d |
|
| 40 |
34 39
|
syl5ibrcom |
|
| 41 |
40
|
expimpd |
|
| 42 |
41
|
rexlimdvva |
|
| 43 |
10 42
|
biimtrid |
|
| 44 |
43
|
ralrimiv |
|
| 45 |
|
eqid |
|
| 46 |
45
|
xkotopon |
|
| 47 |
22 1 46
|
syl2anc |
|
| 48 |
|
ovex |
|
| 49 |
48
|
pwex |
|
| 50 |
6 7 8
|
xkotf |
|
| 51 |
|
frn |
|
| 52 |
50 51
|
ax-mp |
|
| 53 |
49 52
|
ssexi |
|
| 54 |
53
|
a1i |
|
| 55 |
|
cntop1 |
|
| 56 |
2 55
|
syl |
|
| 57 |
6 7 8
|
xkoval |
|
| 58 |
56 1 57
|
syl2anc |
|
| 59 |
|
eqid |
|
| 60 |
59
|
xkotopon |
|
| 61 |
56 1 60
|
syl2anc |
|
| 62 |
47 54 58 61
|
subbascn |
|
| 63 |
5 44 62
|
mpbir2and |
|