Metamath Proof Explorer


Theorem xkococn

Description: Continuity of the composition operation as a function on continuous function spaces. (Contributed by Mario Carneiro, 20-Mar-2015) (Revised by Mario Carneiro, 22-Aug-2015)

Ref Expression
Hypothesis xkococn.1 F = f S Cn T , g R Cn S f g
Assertion xkococn R Top S N-Locally Comp T Top F T ^ ko S × t S ^ ko R Cn T ^ ko R

Proof

Step Hyp Ref Expression
1 xkococn.1 F = f S Cn T , g R Cn S f g
2 simprr R Top S N-Locally Comp T Top f S Cn T g R Cn S g R Cn S
3 simprl R Top S N-Locally Comp T Top f S Cn T g R Cn S f S Cn T
4 cnco g R Cn S f S Cn T f g R Cn T
5 2 3 4 syl2anc R Top S N-Locally Comp T Top f S Cn T g R Cn S f g R Cn T
6 5 ralrimivva R Top S N-Locally Comp T Top f S Cn T g R Cn S f g R Cn T
7 1 fmpo f S Cn T g R Cn S f g R Cn T F : S Cn T × R Cn S R Cn T
8 6 7 sylib R Top S N-Locally Comp T Top F : S Cn T × R Cn S R Cn T
9 eqid k y 𝒫 R | R 𝑡 y Comp , v T h R Cn T | h k v = k y 𝒫 R | R 𝑡 y Comp , v T h R Cn T | h k v
10 9 rnmpo ran k y 𝒫 R | R 𝑡 y Comp , v T h R Cn T | h k v = x | k y 𝒫 R | R 𝑡 y Comp v T x = h R Cn T | h k v
11 10 eleq2i x ran k y 𝒫 R | R 𝑡 y Comp , v T h R Cn T | h k v x x | k y 𝒫 R | R 𝑡 y Comp v T x = h R Cn T | h k v
12 abid x x | k y 𝒫 R | R 𝑡 y Comp v T x = h R Cn T | h k v k y 𝒫 R | R 𝑡 y Comp v T x = h R Cn T | h k v
13 oveq2 y = k R 𝑡 y = R 𝑡 k
14 13 eleq1d y = k R 𝑡 y Comp R 𝑡 k Comp
15 14 rexrab k y 𝒫 R | R 𝑡 y Comp v T x = h R Cn T | h k v k 𝒫 R R 𝑡 k Comp v T x = h R Cn T | h k v
16 11 12 15 3bitri x ran k y 𝒫 R | R 𝑡 y Comp , v T h R Cn T | h k v k 𝒫 R R 𝑡 k Comp v T x = h R Cn T | h k v
17 8 ad2antrr R Top S N-Locally Comp T Top k 𝒫 R R 𝑡 k Comp v T F : S Cn T × R Cn S R Cn T
18 ffn F : S Cn T × R Cn S R Cn T F Fn S Cn T × R Cn S
19 elpreima F Fn S Cn T × R Cn S y F -1 h R Cn T | h k v y S Cn T × R Cn S F y h R Cn T | h k v
20 17 18 19 3syl R Top S N-Locally Comp T Top k 𝒫 R R 𝑡 k Comp v T y F -1 h R Cn T | h k v y S Cn T × R Cn S F y h R Cn T | h k v
21 coeq1 f = a f g = a g
22 coeq2 g = b a g = a b
23 vex a V
24 vex b V
25 23 24 coex a b V
26 21 22 1 25 ovmpo a S Cn T b R Cn S a F b = a b
27 26 adantl R Top S N-Locally Comp T Top k 𝒫 R R 𝑡 k Comp v T a S Cn T b R Cn S a F b = a b
28 27 eleq1d R Top S N-Locally Comp T Top k 𝒫 R R 𝑡 k Comp v T a S Cn T b R Cn S a F b h R Cn T | h k v a b h R Cn T | h k v
29 imaeq1 h = a b h k = a b k
30 29 sseq1d h = a b h k v a b k v
31 30 elrab a b h R Cn T | h k v a b R Cn T a b k v
32 31 simprbi a b h R Cn T | h k v a b k v
33 simp2 R Top S N-Locally Comp T Top S N-Locally Comp
34 33 ad3antrrr R Top S N-Locally Comp T Top k 𝒫 R R 𝑡 k Comp v T a S Cn T b R Cn S a b k v S N-Locally Comp
35 elpwi k 𝒫 R k R
36 35 ad2antrl R Top S N-Locally Comp T Top k 𝒫 R R 𝑡 k Comp k R
37 36 ad2antrr R Top S N-Locally Comp T Top k 𝒫 R R 𝑡 k Comp v T a S Cn T b R Cn S a b k v k R
38 simprr R Top S N-Locally Comp T Top k 𝒫 R R 𝑡 k Comp R 𝑡 k Comp
39 38 ad2antrr R Top S N-Locally Comp T Top k 𝒫 R R 𝑡 k Comp v T a S Cn T b R Cn S a b k v R 𝑡 k Comp
40 simplr R Top S N-Locally Comp T Top k 𝒫 R R 𝑡 k Comp v T a S Cn T b R Cn S a b k v v T
41 simprll R Top S N-Locally Comp T Top k 𝒫 R R 𝑡 k Comp v T a S Cn T b R Cn S a b k v a S Cn T
42 simprlr R Top S N-Locally Comp T Top k 𝒫 R R 𝑡 k Comp v T a S Cn T b R Cn S a b k v b R Cn S
43 simprr R Top S N-Locally Comp T Top k 𝒫 R R 𝑡 k Comp v T a S Cn T b R Cn S a b k v a b k v
44 1 34 37 39 40 41 42 43 xkococnlem R Top S N-Locally Comp T Top k 𝒫 R R 𝑡 k Comp v T a S Cn T b R Cn S a b k v z T ^ ko S × t S ^ ko R a b z z F -1 h R Cn T | h k v
45 44 expr R Top S N-Locally Comp T Top k 𝒫 R R 𝑡 k Comp v T a S Cn T b R Cn S a b k v z T ^ ko S × t S ^ ko R a b z z F -1 h R Cn T | h k v
46 32 45 syl5 R Top S N-Locally Comp T Top k 𝒫 R R 𝑡 k Comp v T a S Cn T b R Cn S a b h R Cn T | h k v z T ^ ko S × t S ^ ko R a b z z F -1 h R Cn T | h k v
47 28 46 sylbid R Top S N-Locally Comp T Top k 𝒫 R R 𝑡 k Comp v T a S Cn T b R Cn S a F b h R Cn T | h k v z T ^ ko S × t S ^ ko R a b z z F -1 h R Cn T | h k v
48 47 ralrimivva R Top S N-Locally Comp T Top k 𝒫 R R 𝑡 k Comp v T a S Cn T b R Cn S a F b h R Cn T | h k v z T ^ ko S × t S ^ ko R a b z z F -1 h R Cn T | h k v
49 fveq2 y = a b F y = F a b
50 df-ov a F b = F a b
51 49 50 eqtr4di y = a b F y = a F b
52 51 eleq1d y = a b F y h R Cn T | h k v a F b h R Cn T | h k v
53 eleq1 y = a b y z a b z
54 53 anbi1d y = a b y z z F -1 h R Cn T | h k v a b z z F -1 h R Cn T | h k v
55 54 rexbidv y = a b z T ^ ko S × t S ^ ko R y z z F -1 h R Cn T | h k v z T ^ ko S × t S ^ ko R a b z z F -1 h R Cn T | h k v
56 52 55 imbi12d y = a b F y h R Cn T | h k v z T ^ ko S × t S ^ ko R y z z F -1 h R Cn T | h k v a F b h R Cn T | h k v z T ^ ko S × t S ^ ko R a b z z F -1 h R Cn T | h k v
57 56 ralxp y S Cn T × R Cn S F y h R Cn T | h k v z T ^ ko S × t S ^ ko R y z z F -1 h R Cn T | h k v a S Cn T b R Cn S a F b h R Cn T | h k v z T ^ ko S × t S ^ ko R a b z z F -1 h R Cn T | h k v
58 48 57 sylibr R Top S N-Locally Comp T Top k 𝒫 R R 𝑡 k Comp v T y S Cn T × R Cn S F y h R Cn T | h k v z T ^ ko S × t S ^ ko R y z z F -1 h R Cn T | h k v
59 58 r19.21bi R Top S N-Locally Comp T Top k 𝒫 R R 𝑡 k Comp v T y S Cn T × R Cn S F y h R Cn T | h k v z T ^ ko S × t S ^ ko R y z z F -1 h R Cn T | h k v
60 59 expimpd R Top S N-Locally Comp T Top k 𝒫 R R 𝑡 k Comp v T y S Cn T × R Cn S F y h R Cn T | h k v z T ^ ko S × t S ^ ko R y z z F -1 h R Cn T | h k v
61 20 60 sylbid R Top S N-Locally Comp T Top k 𝒫 R R 𝑡 k Comp v T y F -1 h R Cn T | h k v z T ^ ko S × t S ^ ko R y z z F -1 h R Cn T | h k v
62 61 ralrimiv R Top S N-Locally Comp T Top k 𝒫 R R 𝑡 k Comp v T y F -1 h R Cn T | h k v z T ^ ko S × t S ^ ko R y z z F -1 h R Cn T | h k v
63 nllytop S N-Locally Comp S Top
64 63 3ad2ant2 R Top S N-Locally Comp T Top S Top
65 simp3 R Top S N-Locally Comp T Top T Top
66 xkotop S Top T Top T ^ ko S Top
67 64 65 66 syl2anc R Top S N-Locally Comp T Top T ^ ko S Top
68 simp1 R Top S N-Locally Comp T Top R Top
69 xkotop R Top S Top S ^ ko R Top
70 68 64 69 syl2anc R Top S N-Locally Comp T Top S ^ ko R Top
71 txtop T ^ ko S Top S ^ ko R Top T ^ ko S × t S ^ ko R Top
72 67 70 71 syl2anc R Top S N-Locally Comp T Top T ^ ko S × t S ^ ko R Top
73 72 ad2antrr R Top S N-Locally Comp T Top k 𝒫 R R 𝑡 k Comp v T T ^ ko S × t S ^ ko R Top
74 eltop2 T ^ ko S × t S ^ ko R Top F -1 h R Cn T | h k v T ^ ko S × t S ^ ko R y F -1 h R Cn T | h k v z T ^ ko S × t S ^ ko R y z z F -1 h R Cn T | h k v
75 73 74 syl R Top S N-Locally Comp T Top k 𝒫 R R 𝑡 k Comp v T F -1 h R Cn T | h k v T ^ ko S × t S ^ ko R y F -1 h R Cn T | h k v z T ^ ko S × t S ^ ko R y z z F -1 h R Cn T | h k v
76 62 75 mpbird R Top S N-Locally Comp T Top k 𝒫 R R 𝑡 k Comp v T F -1 h R Cn T | h k v T ^ ko S × t S ^ ko R
77 imaeq2 x = h R Cn T | h k v F -1 x = F -1 h R Cn T | h k v
78 77 eleq1d x = h R Cn T | h k v F -1 x T ^ ko S × t S ^ ko R F -1 h R Cn T | h k v T ^ ko S × t S ^ ko R
79 76 78 syl5ibrcom R Top S N-Locally Comp T Top k 𝒫 R R 𝑡 k Comp v T x = h R Cn T | h k v F -1 x T ^ ko S × t S ^ ko R
80 79 rexlimdva R Top S N-Locally Comp T Top k 𝒫 R R 𝑡 k Comp v T x = h R Cn T | h k v F -1 x T ^ ko S × t S ^ ko R
81 80 anassrs R Top S N-Locally Comp T Top k 𝒫 R R 𝑡 k Comp v T x = h R Cn T | h k v F -1 x T ^ ko S × t S ^ ko R
82 81 expimpd R Top S N-Locally Comp T Top k 𝒫 R R 𝑡 k Comp v T x = h R Cn T | h k v F -1 x T ^ ko S × t S ^ ko R
83 82 rexlimdva R Top S N-Locally Comp T Top k 𝒫 R R 𝑡 k Comp v T x = h R Cn T | h k v F -1 x T ^ ko S × t S ^ ko R
84 16 83 syl5bi R Top S N-Locally Comp T Top x ran k y 𝒫 R | R 𝑡 y Comp , v T h R Cn T | h k v F -1 x T ^ ko S × t S ^ ko R
85 84 ralrimiv R Top S N-Locally Comp T Top x ran k y 𝒫 R | R 𝑡 y Comp , v T h R Cn T | h k v F -1 x T ^ ko S × t S ^ ko R
86 eqid T ^ ko S = T ^ ko S
87 86 xkotopon S Top T Top T ^ ko S TopOn S Cn T
88 64 65 87 syl2anc R Top S N-Locally Comp T Top T ^ ko S TopOn S Cn T
89 eqid S ^ ko R = S ^ ko R
90 89 xkotopon R Top S Top S ^ ko R TopOn R Cn S
91 68 64 90 syl2anc R Top S N-Locally Comp T Top S ^ ko R TopOn R Cn S
92 txtopon T ^ ko S TopOn S Cn T S ^ ko R TopOn R Cn S T ^ ko S × t S ^ ko R TopOn S Cn T × R Cn S
93 88 91 92 syl2anc R Top S N-Locally Comp T Top T ^ ko S × t S ^ ko R TopOn S Cn T × R Cn S
94 ovex R Cn T V
95 94 pwex 𝒫 R Cn T V
96 eqid R = R
97 eqid y 𝒫 R | R 𝑡 y Comp = y 𝒫 R | R 𝑡 y Comp
98 96 97 9 xkotf k y 𝒫 R | R 𝑡 y Comp , v T h R Cn T | h k v : y 𝒫 R | R 𝑡 y Comp × T 𝒫 R Cn T
99 frn k y 𝒫 R | R 𝑡 y Comp , v T h R Cn T | h k v : y 𝒫 R | R 𝑡 y Comp × T 𝒫 R Cn T ran k y 𝒫 R | R 𝑡 y Comp , v T h R Cn T | h k v 𝒫 R Cn T
100 98 99 ax-mp ran k y 𝒫 R | R 𝑡 y Comp , v T h R Cn T | h k v 𝒫 R Cn T
101 95 100 ssexi ran k y 𝒫 R | R 𝑡 y Comp , v T h R Cn T | h k v V
102 101 a1i R Top S N-Locally Comp T Top ran k y 𝒫 R | R 𝑡 y Comp , v T h R Cn T | h k v V
103 96 97 9 xkoval R Top T Top T ^ ko R = topGen fi ran k y 𝒫 R | R 𝑡 y Comp , v T h R Cn T | h k v
104 103 3adant2 R Top S N-Locally Comp T Top T ^ ko R = topGen fi ran k y 𝒫 R | R 𝑡 y Comp , v T h R Cn T | h k v
105 eqid T ^ ko R = T ^ ko R
106 105 xkotopon R Top T Top T ^ ko R TopOn R Cn T
107 106 3adant2 R Top S N-Locally Comp T Top T ^ ko R TopOn R Cn T
108 93 102 104 107 subbascn R Top S N-Locally Comp T Top F T ^ ko S × t S ^ ko R Cn T ^ ko R F : S Cn T × R Cn S R Cn T x ran k y 𝒫 R | R 𝑡 y Comp , v T h R Cn T | h k v F -1 x T ^ ko S × t S ^ ko R
109 8 85 108 mpbir2and R Top S N-Locally Comp T Top F T ^ ko S × t S ^ ko R Cn T ^ ko R