| Step |
Hyp |
Ref |
Expression |
| 1 |
|
xkofvcn.1 |
|
| 2 |
|
xkofvcn.2 |
|
| 3 |
|
nllytop |
|
| 4 |
|
eqid |
|
| 5 |
4
|
xkotopon |
|
| 6 |
3 5
|
sylan |
|
| 7 |
3
|
adantr |
|
| 8 |
1
|
toptopon |
|
| 9 |
7 8
|
sylib |
|
| 10 |
6 9
|
cnmpt1st |
|
| 11 |
6 9
|
cnmpt2nd |
|
| 12 |
|
1on |
|
| 13 |
|
distopon |
|
| 14 |
12 13
|
mp1i |
|
| 15 |
|
xkoccn |
|
| 16 |
14 9 15
|
syl2anc |
|
| 17 |
|
sneq |
|
| 18 |
17
|
xpeq2d |
|
| 19 |
6 9 11 9 16 18
|
cnmpt21 |
|
| 20 |
|
distop |
|
| 21 |
12 20
|
mp1i |
|
| 22 |
|
eqid |
|
| 23 |
22
|
xkotopon |
|
| 24 |
21 7 23
|
syl2anc |
|
| 25 |
|
simpl |
|
| 26 |
|
simpr |
|
| 27 |
|
eqid |
|
| 28 |
27
|
xkococn |
|
| 29 |
21 25 26 28
|
syl3anc |
|
| 30 |
|
coeq1 |
|
| 31 |
|
coeq2 |
|
| 32 |
30 31
|
sylan9eq |
|
| 33 |
6 9 10 19 6 24 29 32
|
cnmpt22 |
|
| 34 |
|
eqid |
|
| 35 |
34
|
xkotopon |
|
| 36 |
21 26 35
|
syl2anc |
|
| 37 |
|
0lt1o |
|
| 38 |
37
|
a1i |
|
| 39 |
|
unipw |
|
| 40 |
39
|
eqcomi |
|
| 41 |
40
|
xkopjcn |
|
| 42 |
21 26 38 41
|
syl3anc |
|
| 43 |
|
fveq1 |
|
| 44 |
|
vex |
|
| 45 |
44
|
fconst |
|
| 46 |
|
fvco3 |
|
| 47 |
45 37 46
|
mp2an |
|
| 48 |
44
|
fvconst2 |
|
| 49 |
37 48
|
ax-mp |
|
| 50 |
49
|
fveq2i |
|
| 51 |
47 50
|
eqtri |
|
| 52 |
43 51
|
eqtrdi |
|
| 53 |
6 9 33 36 42 52
|
cnmpt21 |
|
| 54 |
2 53
|
eqeltrid |
|