Step |
Hyp |
Ref |
Expression |
1 |
|
xkofvcn.1 |
|
2 |
|
xkofvcn.2 |
|
3 |
|
nllytop |
|
4 |
|
eqid |
|
5 |
4
|
xkotopon |
|
6 |
3 5
|
sylan |
|
7 |
3
|
adantr |
|
8 |
1
|
toptopon |
|
9 |
7 8
|
sylib |
|
10 |
6 9
|
cnmpt1st |
|
11 |
6 9
|
cnmpt2nd |
|
12 |
|
1on |
|
13 |
|
distopon |
|
14 |
12 13
|
mp1i |
|
15 |
|
xkoccn |
|
16 |
14 9 15
|
syl2anc |
|
17 |
|
sneq |
|
18 |
17
|
xpeq2d |
|
19 |
6 9 11 9 16 18
|
cnmpt21 |
|
20 |
|
distop |
|
21 |
12 20
|
mp1i |
|
22 |
|
eqid |
|
23 |
22
|
xkotopon |
|
24 |
21 7 23
|
syl2anc |
|
25 |
|
simpl |
|
26 |
|
simpr |
|
27 |
|
eqid |
|
28 |
27
|
xkococn |
|
29 |
21 25 26 28
|
syl3anc |
|
30 |
|
coeq1 |
|
31 |
|
coeq2 |
|
32 |
30 31
|
sylan9eq |
|
33 |
6 9 10 19 6 24 29 32
|
cnmpt22 |
|
34 |
|
eqid |
|
35 |
34
|
xkotopon |
|
36 |
21 26 35
|
syl2anc |
|
37 |
|
0lt1o |
|
38 |
37
|
a1i |
|
39 |
|
unipw |
|
40 |
39
|
eqcomi |
|
41 |
40
|
xkopjcn |
|
42 |
21 26 38 41
|
syl3anc |
|
43 |
|
fveq1 |
|
44 |
|
vex |
|
45 |
44
|
fconst |
|
46 |
|
fvco3 |
|
47 |
45 37 46
|
mp2an |
|
48 |
44
|
fvconst2 |
|
49 |
37 48
|
ax-mp |
|
50 |
49
|
fveq2i |
|
51 |
47 50
|
eqtri |
|
52 |
43 51
|
eqtrdi |
|
53 |
6 9 33 36 42 52
|
cnmpt21 |
|
54 |
2 53
|
eqeltrid |
|