Step |
Hyp |
Ref |
Expression |
1 |
|
xkoinjcn.3 |
|
2 |
|
simplr |
|
3 |
2
|
cnmptid |
|
4 |
|
simpll |
|
5 |
|
simpr |
|
6 |
2 4 5
|
cnmptc |
|
7 |
2 3 6
|
cnmpt1t |
|
8 |
7 1
|
fmptd |
|
9 |
|
eqid |
|
10 |
|
eqid |
|
11 |
|
eqid |
|
12 |
9 10 11
|
xkobval |
|
13 |
12
|
abeq2i |
|
14 |
|
simpll |
|
15 |
14 7
|
sylan |
|
16 |
|
imaeq1 |
|
17 |
16
|
sseq1d |
|
18 |
17
|
elrab3 |
|
19 |
15 18
|
syl |
|
20 |
|
funmpt |
|
21 |
|
simplrl |
|
22 |
21
|
elpwid |
|
23 |
14
|
simprd |
|
24 |
|
toponuni |
|
25 |
23 24
|
syl |
|
26 |
22 25
|
sseqtrrd |
|
27 |
26
|
adantr |
|
28 |
|
dmmptg |
|
29 |
|
opex |
|
30 |
29
|
a1i |
|
31 |
28 30
|
mprg |
|
32 |
27 31
|
sseqtrrdi |
|
33 |
|
funimass4 |
|
34 |
20 32 33
|
sylancr |
|
35 |
27
|
sselda |
|
36 |
|
opeq1 |
|
37 |
|
eqid |
|
38 |
|
opex |
|
39 |
36 37 38
|
fvmpt |
|
40 |
35 39
|
syl |
|
41 |
40
|
eleq1d |
|
42 |
|
vex |
|
43 |
|
opeq2 |
|
44 |
43
|
eleq1d |
|
45 |
42 44
|
ralsn |
|
46 |
41 45
|
bitr4di |
|
47 |
46
|
ralbidva |
|
48 |
|
dfss3 |
|
49 |
|
eleq1 |
|
50 |
49
|
ralxp |
|
51 |
48 50
|
bitri |
|
52 |
47 51
|
bitr4di |
|
53 |
19 34 52
|
3bitrd |
|
54 |
53
|
rabbidva |
|
55 |
|
sneq |
|
56 |
55
|
xpeq2d |
|
57 |
56
|
sseq1d |
|
58 |
57
|
elrab |
|
59 |
|
eqid |
|
60 |
|
eqid |
|
61 |
|
simplr |
|
62 |
|
simpll |
|
63 |
62
|
ad2antrr |
|
64 |
|
topontop |
|
65 |
63 64
|
syl |
|
66 |
|
topontop |
|
67 |
66
|
adantl |
|
68 |
64
|
adantr |
|
69 |
|
txtop |
|
70 |
67 68 69
|
syl2anc |
|
71 |
70
|
ad3antrrr |
|
72 |
|
vex |
|
73 |
|
toponmax |
|
74 |
63 73
|
syl |
|
75 |
|
xpexg |
|
76 |
72 74 75
|
sylancr |
|
77 |
|
simprr |
|
78 |
77
|
ad2antrr |
|
79 |
|
elrestr |
|
80 |
71 76 78 79
|
syl3anc |
|
81 |
67
|
ad3antrrr |
|
82 |
72
|
a1i |
|
83 |
|
txrest |
|
84 |
81 65 82 74 83
|
syl22anc |
|
85 |
|
toponuni |
|
86 |
63 85
|
syl |
|
87 |
86
|
oveq2d |
|
88 |
60
|
restid |
|
89 |
63 88
|
syl |
|
90 |
87 89
|
eqtrd |
|
91 |
90
|
oveq2d |
|
92 |
84 91
|
eqtrd |
|
93 |
80 92
|
eleqtrd |
|
94 |
23
|
adantr |
|
95 |
26
|
adantr |
|
96 |
|
resttopon |
|
97 |
94 95 96
|
syl2anc |
|
98 |
|
toponuni |
|
99 |
97 98
|
syl |
|
100 |
99
|
xpeq1d |
|
101 |
|
simprr |
|
102 |
|
simprl |
|
103 |
102
|
snssd |
|
104 |
|
xpss2 |
|
105 |
103 104
|
syl |
|
106 |
101 105
|
ssind |
|
107 |
100 106
|
eqsstrrd |
|
108 |
102 86
|
eleqtrd |
|
109 |
59 60 61 65 93 107 108
|
txtube |
|
110 |
|
toponss |
|
111 |
63 110
|
sylan |
|
112 |
|
ssrab |
|
113 |
112
|
baib |
|
114 |
111 113
|
syl |
|
115 |
|
xpss2 |
|
116 |
111 115
|
syl |
|
117 |
116
|
biantrud |
|
118 |
|
iunid |
|
119 |
118
|
xpeq2i |
|
120 |
|
xpiundi |
|
121 |
119 120
|
eqtr3i |
|
122 |
121
|
sseq1i |
|
123 |
|
iunss |
|
124 |
122 123
|
bitri |
|
125 |
|
ssin |
|
126 |
117 124 125
|
3bitr3g |
|
127 |
99
|
adantr |
|
128 |
127
|
xpeq1d |
|
129 |
128
|
sseq1d |
|
130 |
114 126 129
|
3bitrd |
|
131 |
130
|
anbi2d |
|
132 |
131
|
rexbidva |
|
133 |
109 132
|
mpbird |
|
134 |
58 133
|
sylan2b |
|
135 |
134
|
ralrimiva |
|
136 |
|
eltop2 |
|
137 |
14 68 136
|
3syl |
|
138 |
135 137
|
mpbird |
|
139 |
54 138
|
eqeltrd |
|
140 |
|
imaeq2 |
|
141 |
1
|
mptpreima |
|
142 |
140 141
|
eqtrdi |
|
143 |
142
|
eleq1d |
|
144 |
139 143
|
syl5ibrcom |
|
145 |
144
|
expimpd |
|
146 |
145
|
rexlimdvva |
|
147 |
13 146
|
syl5bi |
|
148 |
147
|
ralrimiv |
|
149 |
|
simpl |
|
150 |
|
ovex |
|
151 |
150
|
pwex |
|
152 |
9 10 11
|
xkotf |
|
153 |
|
frn |
|
154 |
152 153
|
ax-mp |
|
155 |
151 154
|
ssexi |
|
156 |
155
|
a1i |
|
157 |
9 10 11
|
xkoval |
|
158 |
67 70 157
|
syl2anc |
|
159 |
|
eqid |
|
160 |
159
|
xkotopon |
|
161 |
67 70 160
|
syl2anc |
|
162 |
149 156 158 161
|
subbascn |
|
163 |
8 148 162
|
mpbir2and |
|