| Step |
Hyp |
Ref |
Expression |
| 1 |
|
xkopjcn.1 |
|
| 2 |
|
eqid |
|
| 3 |
2
|
xkotopon |
|
| 4 |
3
|
3adant3 |
|
| 5 |
1
|
topopn |
|
| 6 |
5
|
3ad2ant1 |
|
| 7 |
|
fconst6g |
|
| 8 |
7
|
3ad2ant2 |
|
| 9 |
|
pttop |
|
| 10 |
6 8 9
|
syl2anc |
|
| 11 |
|
eqid |
|
| 12 |
1 11
|
cnf |
|
| 13 |
|
uniexg |
|
| 14 |
13
|
3ad2ant2 |
|
| 15 |
14 6
|
elmapd |
|
| 16 |
12 15
|
imbitrrid |
|
| 17 |
16
|
ssrdv |
|
| 18 |
|
simp2 |
|
| 19 |
|
eqid |
|
| 20 |
19 11
|
ptuniconst |
|
| 21 |
6 18 20
|
syl2anc |
|
| 22 |
17 21
|
sseqtrd |
|
| 23 |
|
eqid |
|
| 24 |
23
|
restuni |
|
| 25 |
10 22 24
|
syl2anc |
|
| 26 |
25
|
fveq2d |
|
| 27 |
4 26
|
eleqtrd |
|
| 28 |
1 19
|
xkoptsub |
|
| 29 |
28
|
3adant3 |
|
| 30 |
|
eqid |
|
| 31 |
30
|
cnss1 |
|
| 32 |
27 29 31
|
syl2anc |
|
| 33 |
22
|
resmptd |
|
| 34 |
|
simp3 |
|
| 35 |
23 19
|
ptpjcn |
|
| 36 |
6 8 34 35
|
syl3anc |
|
| 37 |
|
fvconst2g |
|
| 38 |
37
|
3adant1 |
|
| 39 |
38
|
oveq2d |
|
| 40 |
36 39
|
eleqtrd |
|
| 41 |
23
|
cnrest |
|
| 42 |
40 22 41
|
syl2anc |
|
| 43 |
33 42
|
eqeltrrd |
|
| 44 |
32 43
|
sseldd |
|