Metamath Proof Explorer


Theorem xkopjcn

Description: Continuity of a projection map from the space of continuous functions. (This theorem can be strengthened, to joint continuity in both f and A as a function on ( S ^ko R ) tX R , but not without stronger assumptions on R ; see xkofvcn .) (Contributed by Mario Carneiro, 3-Feb-2015) (Revised by Mario Carneiro, 22-Aug-2015)

Ref Expression
Hypothesis xkopjcn.1 X = R
Assertion xkopjcn R Top S Top A X f R Cn S f A S ^ ko R Cn S

Proof

Step Hyp Ref Expression
1 xkopjcn.1 X = R
2 eqid S ^ ko R = S ^ ko R
3 2 xkotopon R Top S Top S ^ ko R TopOn R Cn S
4 3 3adant3 R Top S Top A X S ^ ko R TopOn R Cn S
5 1 topopn R Top X R
6 5 3ad2ant1 R Top S Top A X X R
7 fconst6g S Top X × S : X Top
8 7 3ad2ant2 R Top S Top A X X × S : X Top
9 pttop X R X × S : X Top 𝑡 X × S Top
10 6 8 9 syl2anc R Top S Top A X 𝑡 X × S Top
11 eqid S = S
12 1 11 cnf f R Cn S f : X S
13 uniexg S Top S V
14 13 3ad2ant2 R Top S Top A X S V
15 14 6 elmapd R Top S Top A X f S X f : X S
16 12 15 syl5ibr R Top S Top A X f R Cn S f S X
17 16 ssrdv R Top S Top A X R Cn S S X
18 simp2 R Top S Top A X S Top
19 eqid 𝑡 X × S = 𝑡 X × S
20 19 11 ptuniconst X R S Top S X = 𝑡 X × S
21 6 18 20 syl2anc R Top S Top A X S X = 𝑡 X × S
22 17 21 sseqtrd R Top S Top A X R Cn S 𝑡 X × S
23 eqid 𝑡 X × S = 𝑡 X × S
24 23 restuni 𝑡 X × S Top R Cn S 𝑡 X × S R Cn S = 𝑡 X × S 𝑡 R Cn S
25 10 22 24 syl2anc R Top S Top A X R Cn S = 𝑡 X × S 𝑡 R Cn S
26 25 fveq2d R Top S Top A X TopOn R Cn S = TopOn 𝑡 X × S 𝑡 R Cn S
27 4 26 eleqtrd R Top S Top A X S ^ ko R TopOn 𝑡 X × S 𝑡 R Cn S
28 1 19 xkoptsub R Top S Top 𝑡 X × S 𝑡 R Cn S S ^ ko R
29 28 3adant3 R Top S Top A X 𝑡 X × S 𝑡 R Cn S S ^ ko R
30 eqid 𝑡 X × S 𝑡 R Cn S = 𝑡 X × S 𝑡 R Cn S
31 30 cnss1 S ^ ko R TopOn 𝑡 X × S 𝑡 R Cn S 𝑡 X × S 𝑡 R Cn S S ^ ko R 𝑡 X × S 𝑡 R Cn S Cn S S ^ ko R Cn S
32 27 29 31 syl2anc R Top S Top A X 𝑡 X × S 𝑡 R Cn S Cn S S ^ ko R Cn S
33 22 resmptd R Top S Top A X f 𝑡 X × S f A R Cn S = f R Cn S f A
34 simp3 R Top S Top A X A X
35 23 19 ptpjcn X R X × S : X Top A X f 𝑡 X × S f A 𝑡 X × S Cn X × S A
36 6 8 34 35 syl3anc R Top S Top A X f 𝑡 X × S f A 𝑡 X × S Cn X × S A
37 fvconst2g S Top A X X × S A = S
38 37 3adant1 R Top S Top A X X × S A = S
39 38 oveq2d R Top S Top A X 𝑡 X × S Cn X × S A = 𝑡 X × S Cn S
40 36 39 eleqtrd R Top S Top A X f 𝑡 X × S f A 𝑡 X × S Cn S
41 23 cnrest f 𝑡 X × S f A 𝑡 X × S Cn S R Cn S 𝑡 X × S f 𝑡 X × S f A R Cn S 𝑡 X × S 𝑡 R Cn S Cn S
42 40 22 41 syl2anc R Top S Top A X f 𝑡 X × S f A R Cn S 𝑡 X × S 𝑡 R Cn S Cn S
43 33 42 eqeltrrd R Top S Top A X f R Cn S f A 𝑡 X × S 𝑡 R Cn S Cn S
44 32 43 sseldd R Top S Top A X f R Cn S f A S ^ ko R Cn S