Metamath Proof Explorer


Theorem xkopt

Description: The compact-open topology on a discrete set coincides with the product topology where all the factors are the same. (Contributed by Mario Carneiro, 19-Mar-2015) (Revised by Mario Carneiro, 12-Sep-2015)

Ref Expression
Assertion xkopt R Top A V R ^ ko 𝒫 A = 𝑡 A × R

Proof

Step Hyp Ref Expression
1 distop A V 𝒫 A Top
2 simpl R Top A V R Top
3 unipw 𝒫 A = A
4 3 eqcomi A = 𝒫 A
5 eqid x 𝒫 A | 𝒫 A 𝑡 x Comp = x 𝒫 A | 𝒫 A 𝑡 x Comp
6 eqid k x 𝒫 A | 𝒫 A 𝑡 x Comp , v R f 𝒫 A Cn R | f k v = k x 𝒫 A | 𝒫 A 𝑡 x Comp , v R f 𝒫 A Cn R | f k v
7 4 5 6 xkoval 𝒫 A Top R Top R ^ ko 𝒫 A = topGen fi ran k x 𝒫 A | 𝒫 A 𝑡 x Comp , v R f 𝒫 A Cn R | f k v
8 1 2 7 syl2an2 R Top A V R ^ ko 𝒫 A = topGen fi ran k x 𝒫 A | 𝒫 A 𝑡 x Comp , v R f 𝒫 A Cn R | f k v
9 simpr R Top A V A V
10 fconst6g R Top A × R : A Top
11 10 adantr R Top A V A × R : A Top
12 pttop A V A × R : A Top 𝑡 A × R Top
13 9 11 12 syl2anc R Top A V 𝑡 A × R Top
14 elpwi x 𝒫 A x A
15 restdis A V x A 𝒫 A 𝑡 x = 𝒫 x
16 14 15 sylan2 A V x 𝒫 A 𝒫 A 𝑡 x = 𝒫 x
17 16 adantll R Top A V x 𝒫 A 𝒫 A 𝑡 x = 𝒫 x
18 17 eleq1d R Top A V x 𝒫 A 𝒫 A 𝑡 x Comp 𝒫 x Comp
19 discmp x Fin 𝒫 x Comp
20 18 19 bitr4di R Top A V x 𝒫 A 𝒫 A 𝑡 x Comp x Fin
21 20 rabbidva R Top A V x 𝒫 A | 𝒫 A 𝑡 x Comp = x 𝒫 A | x Fin
22 dfin5 𝒫 A Fin = x 𝒫 A | x Fin
23 21 22 eqtr4di R Top A V x 𝒫 A | 𝒫 A 𝑡 x Comp = 𝒫 A Fin
24 eqidd R Top A V R = R
25 toptopon2 R Top R TopOn R
26 cndis A V R TopOn R 𝒫 A Cn R = R A
27 26 ancoms R TopOn R A V 𝒫 A Cn R = R A
28 25 27 sylanb R Top A V 𝒫 A Cn R = R A
29 28 rabeqdv R Top A V f 𝒫 A Cn R | f k v = f R A | f k v
30 23 24 29 mpoeq123dv R Top A V k x 𝒫 A | 𝒫 A 𝑡 x Comp , v R f 𝒫 A Cn R | f k v = k 𝒫 A Fin , v R f R A | f k v
31 30 rneqd R Top A V ran k x 𝒫 A | 𝒫 A 𝑡 x Comp , v R f 𝒫 A Cn R | f k v = ran k 𝒫 A Fin , v R f R A | f k v
32 eqid k 𝒫 A Fin , v R f R A | f k v = k 𝒫 A Fin , v R f R A | f k v
33 32 rnmpo ran k 𝒫 A Fin , v R f R A | f k v = x | k 𝒫 A Fin v R x = f R A | f k v
34 31 33 eqtrdi R Top A V ran k x 𝒫 A | 𝒫 A 𝑡 x Comp , v R f 𝒫 A Cn R | f k v = x | k 𝒫 A Fin v R x = f R A | f k v
35 elmapi f R A f : A R
36 eleq2 v = if x k v R f x v f x if x k v R
37 36 imbi2d v = if x k v R x A f x v x A f x if x k v R
38 37 bibi1d v = if x k v R x A f x v x k f x v x A f x if x k v R x k f x v
39 eleq2 R = if x k v R f x R f x if x k v R
40 39 imbi2d R = if x k v R x A f x R x A f x if x k v R
41 40 bibi1d R = if x k v R x A f x R x k f x v x A f x if x k v R x k f x v
42 simprl R Top A V k 𝒫 A Fin v R k 𝒫 A Fin
43 42 elin1d R Top A V k 𝒫 A Fin v R k 𝒫 A
44 43 elpwid R Top A V k 𝒫 A Fin v R k A
45 44 adantr R Top A V k 𝒫 A Fin v R f : A R k A
46 45 sselda R Top A V k 𝒫 A Fin v R f : A R x k x A
47 simpr R Top A V k 𝒫 A Fin v R f : A R x k x k
48 46 47 2thd R Top A V k 𝒫 A Fin v R f : A R x k x A x k
49 48 imbi1d R Top A V k 𝒫 A Fin v R f : A R x k x A f x v x k f x v
50 ffvelrn f : A R x A f x R
51 50 ex f : A R x A f x R
52 51 adantl R Top A V k 𝒫 A Fin v R f : A R x A f x R
53 52 adantr R Top A V k 𝒫 A Fin v R f : A R ¬ x k x A f x R
54 pm2.21 ¬ x k x k f x v
55 54 adantl R Top A V k 𝒫 A Fin v R f : A R ¬ x k x k f x v
56 53 55 2thd R Top A V k 𝒫 A Fin v R f : A R ¬ x k x A f x R x k f x v
57 38 41 49 56 ifbothda R Top A V k 𝒫 A Fin v R f : A R x A f x if x k v R x k f x v
58 57 ralbidv2 R Top A V k 𝒫 A Fin v R f : A R x A f x if x k v R x k f x v
59 ffn f : A R f Fn A
60 59 adantl R Top A V k 𝒫 A Fin v R f : A R f Fn A
61 vex f V
62 61 elixp f x A if x k v R f Fn A x A f x if x k v R
63 62 baib f Fn A f x A if x k v R x A f x if x k v R
64 60 63 syl R Top A V k 𝒫 A Fin v R f : A R f x A if x k v R x A f x if x k v R
65 ffun f : A R Fun f
66 fdm f : A R dom f = A
67 66 adantl R Top A V k 𝒫 A Fin v R f : A R dom f = A
68 45 67 sseqtrrd R Top A V k 𝒫 A Fin v R f : A R k dom f
69 funimass4 Fun f k dom f f k v x k f x v
70 65 68 69 syl2an2 R Top A V k 𝒫 A Fin v R f : A R f k v x k f x v
71 58 64 70 3bitr4d R Top A V k 𝒫 A Fin v R f : A R f x A if x k v R f k v
72 35 71 sylan2 R Top A V k 𝒫 A Fin v R f R A f x A if x k v R f k v
73 72 rabbi2dva R Top A V k 𝒫 A Fin v R R A x A if x k v R = f R A | f k v
74 elssuni v R v R
75 74 ad2antll R Top A V k 𝒫 A Fin v R v R
76 ssid R R
77 sseq1 v = if x k v R v R if x k v R R
78 sseq1 R = if x k v R R R if x k v R R
79 77 78 ifboth v R R R if x k v R R
80 75 76 79 sylancl R Top A V k 𝒫 A Fin v R if x k v R R
81 80 ralrimivw R Top A V k 𝒫 A Fin v R x A if x k v R R
82 ss2ixp x A if x k v R R x A if x k v R x A R
83 81 82 syl R Top A V k 𝒫 A Fin v R x A if x k v R x A R
84 simplr R Top A V k 𝒫 A Fin v R A V
85 uniexg R Top R V
86 85 ad2antrr R Top A V k 𝒫 A Fin v R R V
87 ixpconstg A V R V x A R = R A
88 84 86 87 syl2anc R Top A V k 𝒫 A Fin v R x A R = R A
89 83 88 sseqtrd R Top A V k 𝒫 A Fin v R x A if x k v R R A
90 sseqin2 x A if x k v R R A R A x A if x k v R = x A if x k v R
91 89 90 sylib R Top A V k 𝒫 A Fin v R R A x A if x k v R = x A if x k v R
92 73 91 eqtr3d R Top A V k 𝒫 A Fin v R f R A | f k v = x A if x k v R
93 10 ad2antrr R Top A V k 𝒫 A Fin v R A × R : A Top
94 42 elin2d R Top A V k 𝒫 A Fin v R k Fin
95 simplrr R Top A V k 𝒫 A Fin v R x A v R
96 eqid R = R
97 96 topopn R Top R R
98 97 ad3antrrr R Top A V k 𝒫 A Fin v R x A R R
99 95 98 ifcld R Top A V k 𝒫 A Fin v R x A if x k v R R
100 fvconst2g R Top x A A × R x = R
101 100 ad4ant14 R Top A V k 𝒫 A Fin v R x A A × R x = R
102 99 101 eleqtrrd R Top A V k 𝒫 A Fin v R x A if x k v R A × R x
103 eldifn x A k ¬ x k
104 103 iffalsed x A k if x k v R = R
105 104 adantl R Top A V k 𝒫 A Fin v R x A k if x k v R = R
106 eldifi x A k x A
107 106 101 sylan2 R Top A V k 𝒫 A Fin v R x A k A × R x = R
108 107 unieqd R Top A V k 𝒫 A Fin v R x A k A × R x = R
109 105 108 eqtr4d R Top A V k 𝒫 A Fin v R x A k if x k v R = A × R x
110 84 93 94 102 109 ptopn R Top A V k 𝒫 A Fin v R x A if x k v R 𝑡 A × R
111 92 110 eqeltrd R Top A V k 𝒫 A Fin v R f R A | f k v 𝑡 A × R
112 eleq1 x = f R A | f k v x 𝑡 A × R f R A | f k v 𝑡 A × R
113 111 112 syl5ibrcom R Top A V k 𝒫 A Fin v R x = f R A | f k v x 𝑡 A × R
114 113 rexlimdvva R Top A V k 𝒫 A Fin v R x = f R A | f k v x 𝑡 A × R
115 114 abssdv R Top A V x | k 𝒫 A Fin v R x = f R A | f k v 𝑡 A × R
116 34 115 eqsstrd R Top A V ran k x 𝒫 A | 𝒫 A 𝑡 x Comp , v R f 𝒫 A Cn R | f k v 𝑡 A × R
117 tgfiss 𝑡 A × R Top ran k x 𝒫 A | 𝒫 A 𝑡 x Comp , v R f 𝒫 A Cn R | f k v 𝑡 A × R topGen fi ran k x 𝒫 A | 𝒫 A 𝑡 x Comp , v R f 𝒫 A Cn R | f k v 𝑡 A × R
118 13 116 117 syl2anc R Top A V topGen fi ran k x 𝒫 A | 𝒫 A 𝑡 x Comp , v R f 𝒫 A Cn R | f k v 𝑡 A × R
119 8 118 eqsstrd R Top A V R ^ ko 𝒫 A 𝑡 A × R
120 eqid 𝑡 A × R = 𝑡 A × R
121 120 96 ptuniconst A V R Top R A = 𝑡 A × R
122 121 ancoms R Top A V R A = 𝑡 A × R
123 28 122 eqtrd R Top A V 𝒫 A Cn R = 𝑡 A × R
124 123 oveq2d R Top A V 𝑡 A × R 𝑡 𝒫 A Cn R = 𝑡 A × R 𝑡 𝑡 A × R
125 eqid 𝑡 A × R = 𝑡 A × R
126 125 restid 𝑡 A × R Top 𝑡 A × R 𝑡 𝑡 A × R = 𝑡 A × R
127 13 126 syl R Top A V 𝑡 A × R 𝑡 𝑡 A × R = 𝑡 A × R
128 124 127 eqtrd R Top A V 𝑡 A × R 𝑡 𝒫 A Cn R = 𝑡 A × R
129 4 120 xkoptsub 𝒫 A Top R Top 𝑡 A × R 𝑡 𝒫 A Cn R R ^ ko 𝒫 A
130 1 2 129 syl2an2 R Top A V 𝑡 A × R 𝑡 𝒫 A Cn R R ^ ko 𝒫 A
131 128 130 eqsstrrd R Top A V 𝑡 A × R R ^ ko 𝒫 A
132 119 131 eqssd R Top A V R ^ ko 𝒫 A = 𝑡 A × R