Database
BASIC TOPOLOGY
Topology
Product topologies
xkotf
Next ⟩
xkobval
Metamath Proof Explorer
Ascii
Unicode
Theorem
xkotf
Description:
Functionality of function
T
.
(Contributed by
Mario Carneiro
, 19-Mar-2015)
Ref
Expression
Hypotheses
xkoval.x
⊢
X
=
⋃
R
xkoval.k
⊢
K
=
x
∈
𝒫
X
|
R
↾
𝑡
x
∈
Comp
xkoval.t
⊢
T
=
k
∈
K
,
v
∈
S
⟼
f
∈
R
Cn
S
|
f
k
⊆
v
Assertion
xkotf
⊢
T
:
K
×
S
⟶
𝒫
R
Cn
S
Proof
Step
Hyp
Ref
Expression
1
xkoval.x
⊢
X
=
⋃
R
2
xkoval.k
⊢
K
=
x
∈
𝒫
X
|
R
↾
𝑡
x
∈
Comp
3
xkoval.t
⊢
T
=
k
∈
K
,
v
∈
S
⟼
f
∈
R
Cn
S
|
f
k
⊆
v
4
ovex
⊢
R
Cn
S
∈
V
5
ssrab2
⊢
f
∈
R
Cn
S
|
f
k
⊆
v
⊆
R
Cn
S
6
4
5
elpwi2
⊢
f
∈
R
Cn
S
|
f
k
⊆
v
∈
𝒫
R
Cn
S
7
6
rgen2w
⊢
∀
k
∈
K
∀
v
∈
S
f
∈
R
Cn
S
|
f
k
⊆
v
∈
𝒫
R
Cn
S
8
3
fmpo
⊢
∀
k
∈
K
∀
v
∈
S
f
∈
R
Cn
S
|
f
k
⊆
v
∈
𝒫
R
Cn
S
↔
T
:
K
×
S
⟶
𝒫
R
Cn
S
9
7
8
mpbi
⊢
T
:
K
×
S
⟶
𝒫
R
Cn
S