Metamath Proof Explorer


Theorem xkotf

Description: Functionality of function T . (Contributed by Mario Carneiro, 19-Mar-2015)

Ref Expression
Hypotheses xkoval.x X = R
xkoval.k K = x 𝒫 X | R 𝑡 x Comp
xkoval.t T = k K , v S f R Cn S | f k v
Assertion xkotf T : K × S 𝒫 R Cn S

Proof

Step Hyp Ref Expression
1 xkoval.x X = R
2 xkoval.k K = x 𝒫 X | R 𝑡 x Comp
3 xkoval.t T = k K , v S f R Cn S | f k v
4 ovex R Cn S V
5 ssrab2 f R Cn S | f k v R Cn S
6 4 5 elpwi2 f R Cn S | f k v 𝒫 R Cn S
7 6 rgen2w k K v S f R Cn S | f k v 𝒫 R Cn S
8 3 fmpo k K v S f R Cn S | f k v 𝒫 R Cn S T : K × S 𝒫 R Cn S
9 7 8 mpbi T : K × S 𝒫 R Cn S