Database
BASIC TOPOLOGY
Topology
Product topologies
xkotop
Next ⟩
xkoopn
Metamath Proof Explorer
Ascii
Unicode
Theorem
xkotop
Description:
The compact-open topology is a topology.
(Contributed by
Mario Carneiro
, 19-Mar-2015)
Ref
Expression
Assertion
xkotop
⊢
R
∈
Top
∧
S
∈
Top
→
S
^
ko
R
∈
Top
Proof
Step
Hyp
Ref
Expression
1
eqid
⊢
⋃
R
=
⋃
R
2
eqid
⊢
x
∈
𝒫
⋃
R
|
R
↾
𝑡
x
∈
Comp
=
x
∈
𝒫
⋃
R
|
R
↾
𝑡
x
∈
Comp
3
eqid
⊢
k
∈
x
∈
𝒫
⋃
R
|
R
↾
𝑡
x
∈
Comp
,
v
∈
S
⟼
f
∈
R
Cn
S
|
f
k
⊆
v
=
k
∈
x
∈
𝒫
⋃
R
|
R
↾
𝑡
x
∈
Comp
,
v
∈
S
⟼
f
∈
R
Cn
S
|
f
k
⊆
v
4
1
2
3
xkoval
⊢
R
∈
Top
∧
S
∈
Top
→
S
^
ko
R
=
topGen
⁡
fi
⁡
ran
⁡
k
∈
x
∈
𝒫
⋃
R
|
R
↾
𝑡
x
∈
Comp
,
v
∈
S
⟼
f
∈
R
Cn
S
|
f
k
⊆
v
5
fibas
⊢
fi
⁡
ran
⁡
k
∈
x
∈
𝒫
⋃
R
|
R
↾
𝑡
x
∈
Comp
,
v
∈
S
⟼
f
∈
R
Cn
S
|
f
k
⊆
v
∈
TopBases
6
tgcl
⊢
fi
⁡
ran
⁡
k
∈
x
∈
𝒫
⋃
R
|
R
↾
𝑡
x
∈
Comp
,
v
∈
S
⟼
f
∈
R
Cn
S
|
f
k
⊆
v
∈
TopBases
→
topGen
⁡
fi
⁡
ran
⁡
k
∈
x
∈
𝒫
⋃
R
|
R
↾
𝑡
x
∈
Comp
,
v
∈
S
⟼
f
∈
R
Cn
S
|
f
k
⊆
v
∈
Top
7
5
6
ax-mp
⊢
topGen
⁡
fi
⁡
ran
⁡
k
∈
x
∈
𝒫
⋃
R
|
R
↾
𝑡
x
∈
Comp
,
v
∈
S
⟼
f
∈
R
Cn
S
|
f
k
⊆
v
∈
Top
8
4
7
eqeltrdi
⊢
R
∈
Top
∧
S
∈
Top
→
S
^
ko
R
∈
Top