Metamath Proof Explorer


Theorem xkotop

Description: The compact-open topology is a topology. (Contributed by Mario Carneiro, 19-Mar-2015)

Ref Expression
Assertion xkotop R Top S Top S ^ ko R Top

Proof

Step Hyp Ref Expression
1 eqid R = R
2 eqid x 𝒫 R | R 𝑡 x Comp = x 𝒫 R | R 𝑡 x Comp
3 eqid k x 𝒫 R | R 𝑡 x Comp , v S f R Cn S | f k v = k x 𝒫 R | R 𝑡 x Comp , v S f R Cn S | f k v
4 1 2 3 xkoval R Top S Top S ^ ko R = topGen fi ran k x 𝒫 R | R 𝑡 x Comp , v S f R Cn S | f k v
5 fibas fi ran k x 𝒫 R | R 𝑡 x Comp , v S f R Cn S | f k v TopBases
6 tgcl fi ran k x 𝒫 R | R 𝑡 x Comp , v S f R Cn S | f k v TopBases topGen fi ran k x 𝒫 R | R 𝑡 x Comp , v S f R Cn S | f k v Top
7 5 6 ax-mp topGen fi ran k x 𝒫 R | R 𝑡 x Comp , v S f R Cn S | f k v Top
8 4 7 eqeltrdi R Top S Top S ^ ko R Top