Metamath Proof Explorer


Theorem xkotopon

Description: The base set of the compact-open topology. (Contributed by Mario Carneiro, 22-Aug-2015)

Ref Expression
Hypothesis xkouni.1 J = S ^ ko R
Assertion xkotopon R Top S Top J TopOn R Cn S

Proof

Step Hyp Ref Expression
1 xkouni.1 J = S ^ ko R
2 xkotop R Top S Top S ^ ko R Top
3 1 2 eqeltrid R Top S Top J Top
4 1 xkouni R Top S Top R Cn S = J
5 istopon J TopOn R Cn S J Top R Cn S = J
6 3 4 5 sylanbrc R Top S Top J TopOn R Cn S