Metamath Proof Explorer


Theorem xkoval

Description: Value of the compact-open topology. (Contributed by Mario Carneiro, 19-Mar-2015)

Ref Expression
Hypotheses xkoval.x X = R
xkoval.k K = x 𝒫 X | R 𝑡 x Comp
xkoval.t T = k K , v S f R Cn S | f k v
Assertion xkoval R Top S Top S ^ ko R = topGen fi ran T

Proof

Step Hyp Ref Expression
1 xkoval.x X = R
2 xkoval.k K = x 𝒫 X | R 𝑡 x Comp
3 xkoval.t T = k K , v S f R Cn S | f k v
4 simpr s = S r = R r = R
5 4 unieqd s = S r = R r = R
6 5 1 eqtr4di s = S r = R r = X
7 6 pweqd s = S r = R 𝒫 r = 𝒫 X
8 4 oveq1d s = S r = R r 𝑡 x = R 𝑡 x
9 8 eleq1d s = S r = R r 𝑡 x Comp R 𝑡 x Comp
10 7 9 rabeqbidv s = S r = R x 𝒫 r | r 𝑡 x Comp = x 𝒫 X | R 𝑡 x Comp
11 10 2 eqtr4di s = S r = R x 𝒫 r | r 𝑡 x Comp = K
12 simpl s = S r = R s = S
13 4 12 oveq12d s = S r = R r Cn s = R Cn S
14 13 rabeqdv s = S r = R f r Cn s | f k v = f R Cn S | f k v
15 11 12 14 mpoeq123dv s = S r = R k x 𝒫 r | r 𝑡 x Comp , v s f r Cn s | f k v = k K , v S f R Cn S | f k v
16 15 3 eqtr4di s = S r = R k x 𝒫 r | r 𝑡 x Comp , v s f r Cn s | f k v = T
17 16 rneqd s = S r = R ran k x 𝒫 r | r 𝑡 x Comp , v s f r Cn s | f k v = ran T
18 17 fveq2d s = S r = R fi ran k x 𝒫 r | r 𝑡 x Comp , v s f r Cn s | f k v = fi ran T
19 18 fveq2d s = S r = R topGen fi ran k x 𝒫 r | r 𝑡 x Comp , v s f r Cn s | f k v = topGen fi ran T
20 df-xko ^ ko = s Top , r Top topGen fi ran k x 𝒫 r | r 𝑡 x Comp , v s f r Cn s | f k v
21 fvex topGen fi ran T V
22 19 20 21 ovmpoa S Top R Top S ^ ko R = topGen fi ran T
23 22 ancoms R Top S Top S ^ ko R = topGen fi ran T