Database
REAL AND COMPLEX NUMBERS
Order sets
Infinity and the extended real number system (cont.)
xle0neg1
Next ⟩
xle0neg2
Metamath Proof Explorer
Ascii
Unicode
Theorem
xle0neg1
Description:
Extended real version of
le0neg1
.
(Contributed by
Mario Carneiro
, 9-Sep-2015)
Ref
Expression
Assertion
xle0neg1
⊢
A
∈
ℝ
*
→
A
≤
0
↔
0
≤
−
A
Proof
Step
Hyp
Ref
Expression
1
0xr
⊢
0
∈
ℝ
*
2
xleneg
⊢
A
∈
ℝ
*
∧
0
∈
ℝ
*
→
A
≤
0
↔
−
0
≤
−
A
3
1
2
mpan2
⊢
A
∈
ℝ
*
→
A
≤
0
↔
−
0
≤
−
A
4
xneg0
⊢
−
0
=
0
5
4
breq1i
⊢
−
0
≤
−
A
↔
0
≤
−
A
6
3
5
bitrdi
⊢
A
∈
ℝ
*
→
A
≤
0
↔
0
≤
−
A