Description: Extended real version of le2add . (Contributed by Mario Carneiro, 23-Aug-2015)
Ref | Expression | ||
---|---|---|---|
Assertion | xle2add | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpll | |
|
2 | simprl | |
|
3 | simplr | |
|
4 | xleadd1a | |
|
5 | 4 | ex | |
6 | 1 2 3 5 | syl3anc | |
7 | simprr | |
|
8 | xleadd2a | |
|
9 | 8 | ex | |
10 | 3 7 2 9 | syl3anc | |
11 | xaddcl | |
|
12 | 11 | adantr | |
13 | xaddcl | |
|
14 | 2 3 13 | syl2anc | |
15 | xaddcl | |
|
16 | 15 | adantl | |
17 | xrletr | |
|
18 | 12 14 16 17 | syl3anc | |
19 | 6 10 18 | syl2and | |