Metamath Proof Explorer


Theorem xle2add

Description: Extended real version of le2add . (Contributed by Mario Carneiro, 23-Aug-2015)

Ref Expression
Assertion xle2add A * B * C * D * A C B D A + 𝑒 B C + 𝑒 D

Proof

Step Hyp Ref Expression
1 simpll A * B * C * D * A *
2 simprl A * B * C * D * C *
3 simplr A * B * C * D * B *
4 xleadd1a A * C * B * A C A + 𝑒 B C + 𝑒 B
5 4 ex A * C * B * A C A + 𝑒 B C + 𝑒 B
6 1 2 3 5 syl3anc A * B * C * D * A C A + 𝑒 B C + 𝑒 B
7 simprr A * B * C * D * D *
8 xleadd2a B * D * C * B D C + 𝑒 B C + 𝑒 D
9 8 ex B * D * C * B D C + 𝑒 B C + 𝑒 D
10 3 7 2 9 syl3anc A * B * C * D * B D C + 𝑒 B C + 𝑒 D
11 xaddcl A * B * A + 𝑒 B *
12 11 adantr A * B * C * D * A + 𝑒 B *
13 xaddcl C * B * C + 𝑒 B *
14 2 3 13 syl2anc A * B * C * D * C + 𝑒 B *
15 xaddcl C * D * C + 𝑒 D *
16 15 adantl A * B * C * D * C + 𝑒 D *
17 xrletr A + 𝑒 B * C + 𝑒 B * C + 𝑒 D * A + 𝑒 B C + 𝑒 B C + 𝑒 B C + 𝑒 D A + 𝑒 B C + 𝑒 D
18 12 14 16 17 syl3anc A * B * C * D * A + 𝑒 B C + 𝑒 B C + 𝑒 B C + 𝑒 D A + 𝑒 B C + 𝑒 D
19 6 10 18 syl2and A * B * C * D * A C B D A + 𝑒 B C + 𝑒 D