Metamath Proof Explorer


Theorem xle2addd

Description: Adding both side of two inequalities. (Contributed by Glauco Siliprandi, 17-Aug-2020)

Ref Expression
Hypotheses xle2addd.1 φ A *
xle2addd.2 φ B *
xle2addd.3 φ C *
xle2addd.4 φ D *
xle2addd.5 φ A C
xrle2addd.6 φ B D
Assertion xle2addd φ A + 𝑒 B C + 𝑒 D

Proof

Step Hyp Ref Expression
1 xle2addd.1 φ A *
2 xle2addd.2 φ B *
3 xle2addd.3 φ C *
4 xle2addd.4 φ D *
5 xle2addd.5 φ A C
6 xrle2addd.6 φ B D
7 1 2 xaddcld φ A + 𝑒 B *
8 1 4 xaddcld φ A + 𝑒 D *
9 3 4 xaddcld φ C + 𝑒 D *
10 2 4 1 6 xleadd2d φ A + 𝑒 B A + 𝑒 D
11 1 3 4 5 xleadd1d φ A + 𝑒 D C + 𝑒 D
12 7 8 9 10 11 xrletrd φ A + 𝑒 B C + 𝑒 D