Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Glauco Siliprandi
Ordering on real numbers - Real and complex numbers basic operations
xle2addd
Next ⟩
supxrgelem
Metamath Proof Explorer
Ascii
Unicode
Theorem
xle2addd
Description:
Adding both side of two inequalities.
(Contributed by
Glauco Siliprandi
, 17-Aug-2020)
Ref
Expression
Hypotheses
xle2addd.1
⊢
φ
→
A
∈
ℝ
*
xle2addd.2
⊢
φ
→
B
∈
ℝ
*
xle2addd.3
⊢
φ
→
C
∈
ℝ
*
xle2addd.4
⊢
φ
→
D
∈
ℝ
*
xle2addd.5
⊢
φ
→
A
≤
C
xrle2addd.6
⊢
φ
→
B
≤
D
Assertion
xle2addd
⊢
φ
→
A
+
𝑒
B
≤
C
+
𝑒
D
Proof
Step
Hyp
Ref
Expression
1
xle2addd.1
⊢
φ
→
A
∈
ℝ
*
2
xle2addd.2
⊢
φ
→
B
∈
ℝ
*
3
xle2addd.3
⊢
φ
→
C
∈
ℝ
*
4
xle2addd.4
⊢
φ
→
D
∈
ℝ
*
5
xle2addd.5
⊢
φ
→
A
≤
C
6
xrle2addd.6
⊢
φ
→
B
≤
D
7
1
2
xaddcld
⊢
φ
→
A
+
𝑒
B
∈
ℝ
*
8
1
4
xaddcld
⊢
φ
→
A
+
𝑒
D
∈
ℝ
*
9
3
4
xaddcld
⊢
φ
→
C
+
𝑒
D
∈
ℝ
*
10
2
4
1
6
xleadd2d
⊢
φ
→
A
+
𝑒
B
≤
A
+
𝑒
D
11
1
3
4
5
xleadd1d
⊢
φ
→
A
+
𝑒
D
≤
C
+
𝑒
D
12
7
8
9
10
11
xrletrd
⊢
φ
→
A
+
𝑒
B
≤
C
+
𝑒
D