Metamath Proof Explorer


Theorem xleadd1

Description: Weakened version of xleadd1a under which the reverse implication is true. (Contributed by Mario Carneiro, 20-Aug-2015)

Ref Expression
Assertion xleadd1 A * B * C A B A + 𝑒 C B + 𝑒 C

Proof

Step Hyp Ref Expression
1 rexr C C *
2 xleadd1a A * B * C * A B A + 𝑒 C B + 𝑒 C
3 2 ex A * B * C * A B A + 𝑒 C B + 𝑒 C
4 1 3 syl3an3 A * B * C A B A + 𝑒 C B + 𝑒 C
5 simp1 A * B * C A *
6 1 3ad2ant3 A * B * C C *
7 xaddcl A * C * A + 𝑒 C *
8 5 6 7 syl2anc A * B * C A + 𝑒 C *
9 simp2 A * B * C B *
10 xaddcl B * C * B + 𝑒 C *
11 9 6 10 syl2anc A * B * C B + 𝑒 C *
12 xnegcl C * C *
13 6 12 syl A * B * C C *
14 xleadd1a A + 𝑒 C * B + 𝑒 C * C * A + 𝑒 C B + 𝑒 C A + 𝑒 C + 𝑒 C B + 𝑒 C + 𝑒 C
15 14 ex A + 𝑒 C * B + 𝑒 C * C * A + 𝑒 C B + 𝑒 C A + 𝑒 C + 𝑒 C B + 𝑒 C + 𝑒 C
16 8 11 13 15 syl3anc A * B * C A + 𝑒 C B + 𝑒 C A + 𝑒 C + 𝑒 C B + 𝑒 C + 𝑒 C
17 xpncan A * C A + 𝑒 C + 𝑒 C = A
18 17 3adant2 A * B * C A + 𝑒 C + 𝑒 C = A
19 xpncan B * C B + 𝑒 C + 𝑒 C = B
20 19 3adant1 A * B * C B + 𝑒 C + 𝑒 C = B
21 18 20 breq12d A * B * C A + 𝑒 C + 𝑒 C B + 𝑒 C + 𝑒 C A B
22 16 21 sylibd A * B * C A + 𝑒 C B + 𝑒 C A B
23 4 22 impbid A * B * C A B A + 𝑒 C B + 𝑒 C