Metamath Proof Explorer


Theorem xleadd1a

Description: Extended real version of leadd1 ; note that the converse implication is not true, unlike the real version (for example 0 < 1 but ( 1 +e +oo ) <_ ( 0 +e +oo ) ). (Contributed by Mario Carneiro, 20-Aug-2015)

Ref Expression
Assertion xleadd1a A * B * C * A B A + 𝑒 C B + 𝑒 C

Proof

Step Hyp Ref Expression
1 simplrr A * B * C * A B C A B A
2 simpr A * B * C * A B C A B B
3 simplrl A * B * C * A B C A B C
4 simpllr A * B * C * A B C A B A B
5 1 2 3 4 leadd1dd A * B * C * A B C A B A + C B + C
6 1 3 rexaddd A * B * C * A B C A B A + 𝑒 C = A + C
7 2 3 rexaddd A * B * C * A B C A B B + 𝑒 C = B + C
8 5 6 7 3brtr4d A * B * C * A B C A B A + 𝑒 C B + 𝑒 C
9 simpl1 A * B * C * A B A *
10 simpl3 A * B * C * A B C *
11 xaddcl A * C * A + 𝑒 C *
12 9 10 11 syl2anc A * B * C * A B A + 𝑒 C *
13 12 ad2antrr A * B * C * A B C A B = +∞ A + 𝑒 C *
14 pnfge A + 𝑒 C * A + 𝑒 C +∞
15 13 14 syl A * B * C * A B C A B = +∞ A + 𝑒 C +∞
16 oveq1 B = +∞ B + 𝑒 C = +∞ + 𝑒 C
17 rexr C C *
18 renemnf C C −∞
19 xaddpnf2 C * C −∞ +∞ + 𝑒 C = +∞
20 17 18 19 syl2anc C +∞ + 𝑒 C = +∞
21 20 ad2antrl A * B * C * A B C A +∞ + 𝑒 C = +∞
22 16 21 sylan9eqr A * B * C * A B C A B = +∞ B + 𝑒 C = +∞
23 15 22 breqtrrd A * B * C * A B C A B = +∞ A + 𝑒 C B + 𝑒 C
24 12 adantr A * B * C * A B B = −∞ A + 𝑒 C *
25 24 xrleidd A * B * C * A B B = −∞ A + 𝑒 C A + 𝑒 C
26 simplr A * B * C * A B B = −∞ A B
27 simpr A * B * C * A B B = −∞ B = −∞
28 9 adantr A * B * C * A B B = −∞ A *
29 mnfle A * −∞ A
30 28 29 syl A * B * C * A B B = −∞ −∞ A
31 27 30 eqbrtrd A * B * C * A B B = −∞ B A
32 simpl2 A * B * C * A B B *
33 xrletri3 A * B * A = B A B B A
34 9 32 33 syl2anc A * B * C * A B A = B A B B A
35 34 adantr A * B * C * A B B = −∞ A = B A B B A
36 26 31 35 mpbir2and A * B * C * A B B = −∞ A = B
37 36 oveq1d A * B * C * A B B = −∞ A + 𝑒 C = B + 𝑒 C
38 25 37 breqtrd A * B * C * A B B = −∞ A + 𝑒 C B + 𝑒 C
39 38 adantlr A * B * C * A B C A B = −∞ A + 𝑒 C B + 𝑒 C
40 elxr B * B B = +∞ B = −∞
41 32 40 sylib A * B * C * A B B B = +∞ B = −∞
42 41 adantr A * B * C * A B C A B B = +∞ B = −∞
43 8 23 39 42 mpjao3dan A * B * C * A B C A A + 𝑒 C B + 𝑒 C
44 43 anassrs A * B * C * A B C A A + 𝑒 C B + 𝑒 C
45 12 adantr A * B * C * A B A = +∞ A + 𝑒 C *
46 45 xrleidd A * B * C * A B A = +∞ A + 𝑒 C A + 𝑒 C
47 simplr A * B * C * A B A = +∞ A B
48 pnfge B * B +∞
49 32 48 syl A * B * C * A B B +∞
50 49 adantr A * B * C * A B A = +∞ B +∞
51 simpr A * B * C * A B A = +∞ A = +∞
52 50 51 breqtrrd A * B * C * A B A = +∞ B A
53 34 adantr A * B * C * A B A = +∞ A = B A B B A
54 47 52 53 mpbir2and A * B * C * A B A = +∞ A = B
55 54 oveq1d A * B * C * A B A = +∞ A + 𝑒 C = B + 𝑒 C
56 46 55 breqtrd A * B * C * A B A = +∞ A + 𝑒 C B + 𝑒 C
57 56 adantlr A * B * C * A B C A = +∞ A + 𝑒 C B + 𝑒 C
58 oveq1 A = −∞ A + 𝑒 C = −∞ + 𝑒 C
59 renepnf C C +∞
60 xaddmnf2 C * C +∞ −∞ + 𝑒 C = −∞
61 17 59 60 syl2anc C −∞ + 𝑒 C = −∞
62 61 adantl A * B * C * A B C −∞ + 𝑒 C = −∞
63 58 62 sylan9eqr A * B * C * A B C A = −∞ A + 𝑒 C = −∞
64 xaddcl B * C * B + 𝑒 C *
65 32 10 64 syl2anc A * B * C * A B B + 𝑒 C *
66 65 ad2antrr A * B * C * A B C A = −∞ B + 𝑒 C *
67 mnfle B + 𝑒 C * −∞ B + 𝑒 C
68 66 67 syl A * B * C * A B C A = −∞ −∞ B + 𝑒 C
69 63 68 eqbrtrd A * B * C * A B C A = −∞ A + 𝑒 C B + 𝑒 C
70 elxr A * A A = +∞ A = −∞
71 9 70 sylib A * B * C * A B A A = +∞ A = −∞
72 71 adantr A * B * C * A B C A A = +∞ A = −∞
73 44 57 69 72 mpjao3dan A * B * C * A B C A + 𝑒 C B + 𝑒 C
74 38 adantlr A * B * C * A B C = +∞ B = −∞ A + 𝑒 C B + 𝑒 C
75 12 ad2antrr A * B * C * A B C = +∞ B −∞ A + 𝑒 C *
76 75 14 syl A * B * C * A B C = +∞ B −∞ A + 𝑒 C +∞
77 simplr A * B * C * A B C = +∞ B −∞ C = +∞
78 77 oveq2d A * B * C * A B C = +∞ B −∞ B + 𝑒 C = B + 𝑒 +∞
79 32 adantr A * B * C * A B C = +∞ B *
80 xaddpnf1 B * B −∞ B + 𝑒 +∞ = +∞
81 79 80 sylan A * B * C * A B C = +∞ B −∞ B + 𝑒 +∞ = +∞
82 78 81 eqtrd A * B * C * A B C = +∞ B −∞ B + 𝑒 C = +∞
83 76 82 breqtrrd A * B * C * A B C = +∞ B −∞ A + 𝑒 C B + 𝑒 C
84 74 83 pm2.61dane A * B * C * A B C = +∞ A + 𝑒 C B + 𝑒 C
85 56 adantlr A * B * C * A B C = −∞ A = +∞ A + 𝑒 C B + 𝑒 C
86 simplr A * B * C * A B C = −∞ A +∞ C = −∞
87 86 oveq2d A * B * C * A B C = −∞ A +∞ A + 𝑒 C = A + 𝑒 −∞
88 9 adantr A * B * C * A B C = −∞ A *
89 xaddmnf1 A * A +∞ A + 𝑒 −∞ = −∞
90 88 89 sylan A * B * C * A B C = −∞ A +∞ A + 𝑒 −∞ = −∞
91 87 90 eqtrd A * B * C * A B C = −∞ A +∞ A + 𝑒 C = −∞
92 65 ad2antrr A * B * C * A B C = −∞ A +∞ B + 𝑒 C *
93 92 67 syl A * B * C * A B C = −∞ A +∞ −∞ B + 𝑒 C
94 91 93 eqbrtrd A * B * C * A B C = −∞ A +∞ A + 𝑒 C B + 𝑒 C
95 85 94 pm2.61dane A * B * C * A B C = −∞ A + 𝑒 C B + 𝑒 C
96 elxr C * C C = +∞ C = −∞
97 10 96 sylib A * B * C * A B C C = +∞ C = −∞
98 73 84 95 97 mpjao3dan A * B * C * A B A + 𝑒 C B + 𝑒 C