Metamath Proof Explorer


Theorem xleadd1d

Description: Addition of extended reals preserves the "less than or equal to" relation, in the left slot. (Contributed by Glauco Siliprandi, 17-Aug-2020)

Ref Expression
Hypotheses xleadd1d.1 φ A *
xleadd1d.2 φ B *
xleadd1d.3 φ C *
xleadd1d.4 φ A B
Assertion xleadd1d φ A + 𝑒 C B + 𝑒 C

Proof

Step Hyp Ref Expression
1 xleadd1d.1 φ A *
2 xleadd1d.2 φ B *
3 xleadd1d.3 φ C *
4 xleadd1d.4 φ A B
5 xleadd1a A * B * C * A B A + 𝑒 C B + 𝑒 C
6 1 2 3 4 5 syl31anc φ A + 𝑒 C B + 𝑒 C