Metamath Proof Explorer


Theorem xleadd2a

Description: Commuted form of xleadd1a . (Contributed by Mario Carneiro, 20-Aug-2015)

Ref Expression
Assertion xleadd2a A * B * C * A B C + 𝑒 A C + 𝑒 B

Proof

Step Hyp Ref Expression
1 xleadd1a A * B * C * A B A + 𝑒 C B + 𝑒 C
2 xaddcom A * C * A + 𝑒 C = C + 𝑒 A
3 2 3adant2 A * B * C * A + 𝑒 C = C + 𝑒 A
4 3 adantr A * B * C * A B A + 𝑒 C = C + 𝑒 A
5 xaddcom B * C * B + 𝑒 C = C + 𝑒 B
6 5 3adant1 A * B * C * B + 𝑒 C = C + 𝑒 B
7 6 adantr A * B * C * A B B + 𝑒 C = C + 𝑒 B
8 1 4 7 3brtr3d A * B * C * A B C + 𝑒 A C + 𝑒 B