Database
REAL AND COMPLEX NUMBERS
Order sets
Infinity and the extended real number system (cont.)
xleadd2a
Next ⟩
xleadd1
Metamath Proof Explorer
Ascii
Unicode
Theorem
xleadd2a
Description:
Commuted form of
xleadd1a
.
(Contributed by
Mario Carneiro
, 20-Aug-2015)
Ref
Expression
Assertion
xleadd2a
⊢
A
∈
ℝ
*
∧
B
∈
ℝ
*
∧
C
∈
ℝ
*
∧
A
≤
B
→
C
+
𝑒
A
≤
C
+
𝑒
B
Proof
Step
Hyp
Ref
Expression
1
xleadd1a
⊢
A
∈
ℝ
*
∧
B
∈
ℝ
*
∧
C
∈
ℝ
*
∧
A
≤
B
→
A
+
𝑒
C
≤
B
+
𝑒
C
2
xaddcom
⊢
A
∈
ℝ
*
∧
C
∈
ℝ
*
→
A
+
𝑒
C
=
C
+
𝑒
A
3
2
3adant2
⊢
A
∈
ℝ
*
∧
B
∈
ℝ
*
∧
C
∈
ℝ
*
→
A
+
𝑒
C
=
C
+
𝑒
A
4
3
adantr
⊢
A
∈
ℝ
*
∧
B
∈
ℝ
*
∧
C
∈
ℝ
*
∧
A
≤
B
→
A
+
𝑒
C
=
C
+
𝑒
A
5
xaddcom
⊢
B
∈
ℝ
*
∧
C
∈
ℝ
*
→
B
+
𝑒
C
=
C
+
𝑒
B
6
5
3adant1
⊢
A
∈
ℝ
*
∧
B
∈
ℝ
*
∧
C
∈
ℝ
*
→
B
+
𝑒
C
=
C
+
𝑒
B
7
6
adantr
⊢
A
∈
ℝ
*
∧
B
∈
ℝ
*
∧
C
∈
ℝ
*
∧
A
≤
B
→
B
+
𝑒
C
=
C
+
𝑒
B
8
1
4
7
3brtr3d
⊢
A
∈
ℝ
*
∧
B
∈
ℝ
*
∧
C
∈
ℝ
*
∧
A
≤
B
→
C
+
𝑒
A
≤
C
+
𝑒
B