Metamath Proof Explorer


Theorem xleadd2d

Description: Addition of extended reals preserves the "less than or equal to" relation, in the right slot. (Contributed by Glauco Siliprandi, 17-Aug-2020)

Ref Expression
Hypotheses xleadd2d.1 φ A *
xleadd2d.2 φ B *
xleadd2d.3 φ C *
xleadd2d.4 φ A B
Assertion xleadd2d φ C + 𝑒 A C + 𝑒 B

Proof

Step Hyp Ref Expression
1 xleadd2d.1 φ A *
2 xleadd2d.2 φ B *
3 xleadd2d.3 φ C *
4 xleadd2d.4 φ A B
5 xleadd2a A * B * C * A B C + 𝑒 A C + 𝑒 B
6 1 2 3 4 5 syl31anc φ C + 𝑒 A C + 𝑒 B