Step |
Hyp |
Ref |
Expression |
1 |
|
xlebnum.j |
|
2 |
|
xlebnum.d |
|
3 |
|
xlebnum.c |
|
4 |
|
xlebnum.s |
|
5 |
|
xlebnum.u |
|
6 |
|
eqid |
|
7 |
|
1rp |
|
8 |
|
eqid |
|
9 |
8
|
stdbdmet |
|
10 |
2 7 9
|
sylancl |
|
11 |
|
rpxr |
|
12 |
7 11
|
mp1i |
|
13 |
|
0lt1 |
|
14 |
13
|
a1i |
|
15 |
8 1
|
stdbdmopn |
|
16 |
2 12 14 15
|
syl3anc |
|
17 |
16 3
|
eqeltrrd |
|
18 |
4 16
|
sseqtrd |
|
19 |
6 10 17 18 5
|
lebnum |
|
20 |
|
simpr |
|
21 |
|
ifcl |
|
22 |
20 7 21
|
sylancl |
|
23 |
2
|
ad2antrr |
|
24 |
7 11
|
mp1i |
|
25 |
13
|
a1i |
|
26 |
|
simpr |
|
27 |
22
|
adantr |
|
28 |
|
rpxr |
|
29 |
27 28
|
syl |
|
30 |
|
rpre |
|
31 |
30
|
ad2antlr |
|
32 |
|
1re |
|
33 |
|
min2 |
|
34 |
31 32 33
|
sylancl |
|
35 |
8
|
stdbdbl |
|
36 |
23 24 25 26 29 34 35
|
syl33anc |
|
37 |
10
|
ad2antrr |
|
38 |
|
metxmet |
|
39 |
37 38
|
syl |
|
40 |
|
rpxr |
|
41 |
40
|
ad2antlr |
|
42 |
|
min1 |
|
43 |
31 32 42
|
sylancl |
|
44 |
|
ssbl |
|
45 |
39 26 29 41 43 44
|
syl221anc |
|
46 |
36 45
|
eqsstrrd |
|
47 |
|
sstr2 |
|
48 |
46 47
|
syl |
|
49 |
48
|
reximdv |
|
50 |
49
|
ralimdva |
|
51 |
|
oveq2 |
|
52 |
51
|
sseq1d |
|
53 |
52
|
rexbidv |
|
54 |
53
|
ralbidv |
|
55 |
54
|
rspcev |
|
56 |
22 50 55
|
syl6an |
|
57 |
56
|
rexlimdva |
|
58 |
19 57
|
mpd |
|